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Methods for automation of vascular lesion detection

This thesis presents a framework for the detection and diagnosis of vascular
lesions with a special emphasis on coronary heart disease. Coronary heart
disease remains to be the first cause of mortality worldwide.

Typically, the problem of vascular lesion identification has been solved by
trying to model the abnormalities (lesions). The main drawback of this ap-
proach is that lesions are highly heterogeneous, which makes the detection
of previously unseen abnormalities difficult. We have selected not to model
lesions directly, but to treat them as anomalies which are seen as low prob-
ability density points. We propose the use of two classification frameworks
based on support vector machines (SVM) for the density level detection
problem. The main advantage of these two methods is that the learning
stage does not require labeled data representing lesions, which is always
difficult to obtain. The first method is completely unsupervised, whereas
the second one only requires a limited number of labels for normality.

The use of these anomaly detection algorithms requires the use of features
such that anomalies are represented as points with low probability density.
For this purpose, we developed an intensity-based metric, denoted concen-
tric rings, designed to capture the nearly symmetric intensity profiles of
healthy vessels, as well as discrepancies with respect to the normal behav-
ior. Moreover, we have selected a large set of alternative candidate features
to use as input for the classifiers. Experiments on synthetic data and car-
diac CT data demonstrated that our metric has a good performance in the
detection of anomalies, when used with the selected classifiers.

Combination of other features with the concentric rings metric has poten-
tial to improve the classification performance. We defined an unsupervised
feature selection scheme that allows the definition of an optimal subset of
features. We compared it with existent supervised feature selection meth-
ods. These experiments showed that, in general, the combination of features
improves the classifiers performance, and that the best results are achieved
with the combination selected by our scheme, associated with the proposed
anomaly detection algorithms.

Finally, we propose to use image registration in order to compare the clas-
sification results at different cardiac phases. The objective here is to match
the regions detected as anomalous in different time-frames. In this way,
more than attract the physician’s attention to the anomaly detected as po-
tential lesion, we want to aid in validating the diagnosis by automatically
displaying the same suspected region reconstructed in different time-frames.
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Méthodes d’automatisation de la détection des lésions
vasculaires

Résume: Les travaux de cette thèse sont consacrés à la détection et le
diagnostic des lésions vasculaires, particulièrement dans le cas la maladie
coronaire. La maladie coronaire continue à ètre la première cause de mor-
talité dans les pays industrialisés.

En général, l’identification des lésions vasculaires est abordée en essayant
de modéliser les anormalités (lésions). Le principal inconvénient de cette
approche est que les lésions sont très hétérogènes, ce qui rend difficile la
détection de nouvelles lésions qui n’ont pas été prises en compte par le
modèle. Dans cette thèse, nous proposons de ne pas modeliser directement
les lésions, mais de supposer que les lésions sont des événements anormaux
qui se manifestent comme points avec une faible densité de probabilité. Nous
proposons l’utilisation de deux méthodes de classification basées sur les Ma-
chines à Vecteurs de Support (SVM) pour résoudre le problème de détection
du niveau de densité. Le principal avantage de ces deux méthodes est que la
phase d’apprentissage ne requiert pas de données étiquetées reprsentant les
lésions. La première méthode est complètement non supervisée, alors que
la seconde exige des étiquettes seulement pour les cas qu’on appelle sains
ou normaux.

L’utilisation des algorithmes de classification sélectionnés nécessite des de-
scripteurs tels que les anomalies soient représentées comme des points avec
une densité de probabilité faible. À cette fin, nous avons développé une
métrique basée sur l’intensité de l’image, que nous avons appelée concentric
rings. Cette métrique est sensible à la quasi-symétrie des profils d’intensité
des vaisseaux sains, mais aussi aux écarts par rapport à cette symétrie, ob-
servés dans des cas pathologiques. De plus, nous avons sélectionné plusieurs
autres descripteurs candidats à utiliser comme entrée pour les classifieurs.
Des expériences sur des données synthétiques et des données de CT car-
diaques démontrent que notre métrique a une bonne performance dans la
détection d’anomalies, lorsqu’elle est utilisée avec les classifieurs retenus.

Une combinaison de plusieurs descripteurs candidats avec la métrique con-
centric rings peut améliorer la performance de la détection. Nous avons
défini un schéma non supervisé de sélection de descripteurs qui permet de
déterminer un sous-ensemble optimal de descripteurs. Nous avons con-
fronté les résultats de détection réalisée en utilisant le sous-ensemble de



déscripteurs sélectionné par notre méthode avec les performances obtenues
avec des sous-ensembles sélectionnés par des méthodes supervisés existantes.
Ces expriences montrent qu’une combinaison de descripteurs bien choisis
améliore effectivement les performance des classifieurs et que les meilleurs
résultats s’obtiennent avec le sous-ensemble sélectionnépar notre méthode,
en association avec les algorithmes de détection retenus.

Finalement, nous proposons de réaliser un récalage local entre deux images
représentant différentes phases du cycle cardiaque, afin de confronter les
résultats de détection dans ces images (phases). L’objectif ici est non seule-
ment d’attirer l’attention du praticien sur les anomalies détectées comme
lésions potentielles, mais aussi de l’aider à conforter son diagnostic en visu-
alisant automatiquement la même région reconstruite à différents instants
du cycle cardiaque.

Mots clés: Imagerie médicale; Diagnose assisté par ordinateur; Machine
Learning; Support Vector Machines; Selection de déscripteurs; Tomogra-
phie; Maladie vasculaire; Atherosclerose
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Creatis-LRMN

Bât. Blaise Pascal
7 Av. Jean Capelle

69621 Villeurbanne Cedex
France



Synthèse

La maladie coronaire continue à être la principale cause de mortalité dans le monde,
provoquant 7,2 millions de décès par an. Chez les patients symptomatiques, le diagnos-
tic de la présence et sévérité de la maladie vasculaire est essentiel pour déterminer un
traitement médical approprié. La référence pour le diagnostic de la maladie coronaire
est encore la coronarographie. Le plus grand avantage de cette angiographie conven-
tionnelle est sa haute résolution spatiale et la possibilité d’exercer directement des
interventions telles que la dilatation par ballonnet ou pose de stent coronaire. Cepen-
dant, en raison de son caractère invasif, la coronarographie a un risque, faible mais non
négligeable, de complications.

Un développement rapide de la tomodensitomtrie (CT) au cours des 6-8 dernières
années a rendu possible l’angiographie CT des artères coronaires, dans un contexte clin-
ique. Cette technique non invasive permet la visualisation non seulement de la lumière
artérielle coronaire, mais aussi de la présence de plaque d’athérosclérose. Cependant,
son utilisation soulève encore plusieurs préoccupations telles que les doses de rayon-
nement plus élevés qu’en angiographie conventionnelle, ainsi que des difficultés affectant
l’évaluation de la maladie coronaire, notamment de l’étendue et du type de plaque:

� Dans la littérature, il n’y a pas de consensus quant aux nombres CT (unités
Hounsfield) qui différencient les composants de la plaque.

� Les artères coronaires suivent les mouvements du cœur provoquant des artefacts
dans les images reconstruites. Les distorsions résultantes obligent le radiologue à
visualiser l’artère d’intérêt dans des différentes phases, généralement diastole et
systole, afin de créer un modèle mental de l’image qui leur permettra de poser un
diagnostic.

� La qualité des images varie selon le protocole d’acquisition et les caractéristiques
individuelles du patient.

� L’analyse, l’interprétation et la documentation des examens CT coronaires sont
complexes et pas suffisamment standardisées. Bien qu’il existe des pratiques
communes chez les médecins il n’y a pas de protocole d’évaluation bien établi et
universel.

Ce contexte médical est décrit dans le chapitre 1.
Pour surmonter les difficultés mentionnées ci-dessus, dans ce travail, nous proposons

l’élaboration d’un cadre méthodologique visant à l’identification des lesions vasculaires.
L’objectif de notre proposition n’est pas de remplacer le travail des cliniciens, mais de



les aider dans le diagnostic en soulignant des lésions potentielles. Ce cadre méthologique
est décrit dans le chapitre 2.

Le cœur de notre proposition repose sur une stratégie de classification. Notre
approche est basée sur l’apprentissage automatique, cherchant à classer comme nor-
males ou anormales les coupes orthogonales à un axe précédemment extrait. Une
préoccupation majeure d’un tel choix tient au fait que la plupart des approches ex-
istantes basées sur l’apprentissage automatique et visant à la détection des lésions
vasculaires, suivent un schéma de classification supervisée. Ces méthodes reposent sur
la disponibilité d’étiquettes précises et représentatives, aussi bien pour la normalité que
pour toutes les formes de lésions. Un tel étiquetage étant très laborieux et demandant
une grande expertise et beaucoup de temps, il n’est pas souvent possible de l’obtenir.
Deuxièmement, les méthodes supervisées ont des difficultés pour détecter de nouvelles
formes de lesions qui n’étaient pas représentées dans la base d’apprentissage. Comme
les lésions sont par nature hétérogènes, des tendances anormales inconnues peuvent
souvent apparâıtre. Pour surmonter ces problèmes, nous avons proposé l’utilisation
de méthodes qui réduisent au minimum la dépendance par rapport aux ensembles de
données étiquetées. En outre, nous avons formulé le problème d’une façon qui, à notre
connaissance, n’a jamais été utilisée dans ce domaine. Nous formulons notre problème
comme un problème de détection des anomalies. Nous considérons qu’une anomalie
peut être définie comme une observation qui semble être incompatible avec le reste
de l’ensemble des données considérées. Dans cette perspective, nous nous concentrons
sur une seule classe, la normalité, en supposant que tout ce qui s’en écarte peut être
considéré comme anormal. Par conséquent, notre approche consiste à modéliser la nor-
malité par sa haute densité de probabilité et à considérer que les données non-conformes
au comportement attendu ont une densité de probabilité faible. Notre formulation per-
met l’utilisation de méthodes d’apprentissage semi-supervisées et non-supervisées.

L’hypothèse que les anomalies sont des points de densité de probabilité faible nous
amène à formuler le problème comme un problème de détection du niveau de densité
(DLD, pour density level detection en anglais). A cet effet, deux mesures sont définies.
La première permet de mesurer la concentration absolue d’une distribution de proba-
bilité, tandis que la seconda mesure la concentration d’une distribution, par rapport à
une autre distribution qu’on appele mélange. Ces mesures permettent la détermination
des niveaux de densité qui differencient les points de densité probabilité faible de ceux
qui sont très concentrés. Sur la base de ces deux mesures, nous formulons deux algo-
rithmes qui permettent de détecter les niveaux de densité. Les deux méthodes sont
basées sur des séparateurs à vaste marge (SVM).

Le premier algorithme, nommé DLD-SVM, fait usage de la mesure de la concen-
tration absolue. Sa caractéristique principale est qu’il est complètement non-supervisé.
Cela signifie qu’il ne nécessite pas d’étiquettes à l’étape de l’apprentissage, car il cherche
tout simplement les régions de forte densité de probabilité, puis il identifie les anomalies
avec le complément des régions normales. Le deuxième algorithme, nommé LPU (learn-
ing from positive and unlabeled data), est adapté aux situations où un petit ensemble
de données étiquetées (normales) et une grande quantité de données non-étiquetées sont



disponibles. Le but de cet algorithme est de trouver la densité relative des échantillons
provenant de la première série de manière à être en mesure de détecter des échantillons
de la même distribution probabiliste.

Une fois les classifieurs décrits, nous introduisons une nouvelle métrique utilisée
pour calculer leurs entrées. La métrique est appelée anneaux concentriques. Elle a été
conçue dans le but de capturer les profils d’intensité et la symétrie axiale des vaisseaux
normaux, tout en étant sensible aux écarts par rapport à ce comportement normal.

L’objectif de la définition d’une nouvelle métrique n’a pas été de trouver quelque
chose qui pourrait résoudre complètement le problème de classification. Tout d’abord,
nous croyons que cela n’est pas possible et le deuxièmement, il a été montré que la com-
binaison des descripteurs de nature différente améliore la classification. C’est pourquoi,
outre les anneaux concentriques, nous avons également sélectionné un ensemble d’autres
déscripteurs candidats à tester avec nos classifieurs. Vu que la détection d’anomalies
vasculaires avec des techniques d’apprentisage automatique est assez nouvelle, il n’est
pas possible d’établir un ensemble de déscripteurs performants à partir de l’état de l’art
dans le domaine. Par conséquent, nous utilisons des déscripteurs globaux, couramment
utilisés dans le rehaussement ou la segmentation vasculaires, pour définir un ensemble
initial de candidats. Notre critère pour sélectionner ce type de descripteurs repose sur
le fait qu’ils sont censés donner de fortes réponses à des endroits situés dans les régions
de lumière normale, tandis que leurs réponses sont susceptibles de s’écarter de la nor-
malité en présence d’une lésion. Le réglage des paramètres de tous les descripteurs
utilisés dans notre étude, ainsi que l’évaluation des performances individuelles des an-
neaux concentriques en association avec nos classifieurs, sont décrits dans le chapitre 3.
Le réglage des paramètres de notre métrique a été réalisé par une série d’évaluations sur
des fantômes artificiels et sa validation a posteriori sur des données CT de patients. Les
résultats ont montré une bonne spécificité et une bonne sensibilité, aussi bien en associ-
ation avec DLD-SVM qu’avec LPU. En outre, les résultats de classification par les deux
algorithmes démontrent un niveau substantiel de la cöıncidence avec les annotations des
observateurs, mesuré par le coefficient Kappa (0,72% et 0,71%, respectivement). Les
résultats ont permis de conclure que la métrique des anneaux concentriques peut être
appliquée à la détection des lésions vasculaires. Comparés individuellement à chacune
des autres métriques sélectionées, les anneaux concentriques se montrèrent les meilleurs
avec DLD-SVM, et quatrièmes avec LPU.

Dans ce travail, nous explorons également différentes approches de sélection des
descripteurs pour améliorer les performances de la détection des anomalies vasculaires.
Notre objectif est de déterminer les combinaisons de descripteurs qui améliorent la
performance de classification et de définir des lignes directrices pour leur sélection.
Pour cette tâche, nous avons d’abord défini une stratégie non-supervisée utilisant des
informations fournies par les classifieurs basés sur la notion de densité de probabilité,
à savoir le risque empirique. L’avantage de cette stratégie, outre son caractère non-
supervisé, est d’être intégrée avec les classifieurs au sens de l’utilisation des mémes
mécanismes. En outre, nous avons évalué trois stratégies de sélection existantes, toutes
supervisés, connues sous les noms F-score, forêts aléatoires combinées avec SVM et



SVM-RFE. L’évaluation des performances de ces différentes stratégies fait l’objet du
chapitre 4. Cette évaluation a montré que les propositions non-supervisée à l’aide DLD-
SVM et semi-supervisée avec LPU, ont été les plus performantes. Ici, la spécificité a eu
des valeurs de 96,37 et 86,71%, et les sensibilités de 76,52 et 83,84%, respectivement.
En règle générale, DLD-SVM a tendance à avoir une meilleure spécificité que LPU,
tandis que LPU tend à avoir une plus grande sensibilité. Les anneaux concentriques
figurent toujours parmi les descripteurs sélectionnées en utilisant DLD-SVM et LPU.
Cela confirme le potentiel de notre métrique dans le problème de la détection des lésions
vasculaires.

Dans le cadre de notre évaluation, nous avons également comparé la performance de
DLD-SVM et LPU avec d’autres méthodes de l’état de l’art pour la classification. Les
méthodes évaluées se composait de deux classifieurs classiques, forêts aléatoires et SVM
à marge douce, et une méthode de détection d’anomalies très populaire, one-class SVM.
Non seulement DLD-SVM et LPU ont largement dépassé les autres méthodes, mais
cette évaluation nous a permis de valider la pertinence de la perspective de la détection
des anomalies. Dans tous les cas, les trois méthodes de détection des anomalies ont
dépassé les classifieurs classiques.

Dans le chapitre 5, nous présentons une stratégie visant à comparer les anoma-
lies détectées à différents instants du cycle cardiaque. Notre proposition adapte un
algorithme existant de récalage non-rigide, de manière à être utilisé à des régions par-
ticulières de l’image. Sur la base des anomalies détectées, nous construisons une région
d’intérêt (ROI), dans l’image correspondant à une phase, et nous identifions, dans la
deuxième phase, une région avec une forte probabilité de contenir les informations de
la première ROI. Les deux ROI sont ensuite reécalés spatialement. La méthode a été
évaluée sur 10 différents ensembles de données, 3 ROI par ensemble de données, en
montrant une bonne correspondance. Le principal avantage de cette implémentation
est que, en raison de son caractère local, sa charge de calcul est faible, ce qui la rend
envisageable pour la pratique clinique de routine. Ainsi, le clinicien pourra prononcer
le diagnostic final, en analysant, dans deux phases différentes, la même région suspecte
à laquelle le système attirera automatiquement son attention.
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1

Introduction

Coronary heart disease (CHD) remains to be the main cause of mortality worldwide,
World Health Organization (2008) reporting 7.2 millions of deaths per year. In symp-
tomatic patients, diagnosis of the presence and severity of the vascular disease is critical
for determining appropriate clinical management. Advances in the resolution of mul-
tidetector computed tomographic (CT) angiography have encouraged its use in the
assessment of vascular diseases. Nevertheless, the detection and quantification of vas-
cular lesions continue to be a challenging and tedious work for physicians who have to
explore a vast amount of data using different visualization schemes based on advanced
post-processing techniques. Therefore, our main objective is to develop automatic or
semi-automatic tools that ease the diagnosis stage.

This introductory chapter addresses coronary heart disease and CT as an alterna-
tive tool for its diagnosis and the development of tools that facilitate this task. Initially,
basic anatomical aspects of the cardiovascular system (Section 1.1.1) and, more par-
ticularly, of coronary arteries (Section 1.1.2) and the CHD (Section 1.1.3) are briefly
reviewed. Then, advantages and drawbacks of CT technology in the diagnosis of CHD
are discussed (Section 1.1.4). In Section 1.2, we introduce computer aided diagnosis
systems as an alternative in CHD assessment. Our specific proposal in order to re-
duce the associated problems of CHD diagnosis and the contributions of this thesis are
presented in section 1.3 to finally conclude with an outline of the organization of this
manuscript in section 1.4.

1.1 Medical Context

1.1.1 The Cardiovascular System

The cardiovascular system or circulatory system is an organ system that passes nutri-
ents, gases, hormones, etc. to and from cells in the body. The main components of the
human cardiovascular system are the heart and the blood vessels (arteries and veins).

Both arteries and veins have a three layer structure of the wall (Figure 1.1). The
interior of the vessel enclosed by the wall is the vessel lumen. The tunica intima is the
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1. INTRODUCTION

thinnest and innermost layer. It is composed of a single layer of endothelial cells and a
small amount of connective tissue. The second and thickest layer is the tunica media
that provides structural support, vasoreactivity and elasticity. It is composed of smooth
muscle cells, elastic fibers and connective tissue, which vary in amount depending on
the type of vessel. The tunica adventitia is the outermost layer. It is entirely made of
fibrous connective tissue and it contains nerves that supply the vessel as well as nutrient
capillaries in the larger blood vessels (Gray, 2000).

Figure 1.1: Blood vessel anatomy - The vessel wall is made up of three layers tu-
nica adventitia, tunica media and tunica intima. The region enclosed by the vessel wall
is called the vessel lumen (source: LiveScience http://www.livescience.com/health/
060619_synthetic_arteries.html

1.1.2 The Heart and the Coronary Arteries

The heart is a muscular organ responsible for pumping blood throughout the vessels
by repeated, rhythmic contractions. The cardiac muscle (myocardium) receives its
own blood supply from the coronary arteries. The coronary arteries are therefore vital
for the correct functioning of the whole circulatory system. They branch off from the
ascending aorta near the point where the aorta and the left ventricle meet. A branching
point is called an ostium. Two major branches of the coronary arteries arise from the
aorta (Figure 1.2):

The right coronary artery (RCA). It branches into the right marginal artery and
the posterior descending artery. In general, the RCA supplies blood to the right
atrium, the right ventricle, the bottom part of both ventricles and back of the
septum.

The left main coronary artery (LM). The LM divides after a short course into
the circumflex artery (LCX) and the left anterior descending artery (LAD). The
former supplies blood to the left atrium, side and back of the left ventricle, whereas
the latter supplies the front and bottom of the left ventricle and the front of the
septum. Both LCX and LAD give rise to other branches. Amongst others, the
left marginal artery branches from the LCX while the diagonal artery rises from
the LAD.

2
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1.1 Medical Context

Figure 1.2: The coronary arteries - Main coronary arteries representa-
tion (source: Jefferson University Hospitals http://www.jeffersonhospital.org/
Tests-and-Treatments/coronary-artery-bypass-grafting.aspx)

1.1.3 Coronary Heart Disease

Coronary heart disease (CHD), also known as coronary artery disease, is a condition
characterized by the development of atherosclerotic plaques in the coronary arteries.
Atherosclerosis is a chronic immuno-inflammatory disease in which the artery wall
thickens as the result of a build-up of different materials (i.e. cholesterol, calcium,
fibro-fatty deposits). The wall thickening causes progressive narrowing and hardening
of the arteries over time.

Stary (2000) proposed a classification of atherosclerotic plaques into eight different
types (Table 1.1). Types range from minimal intimal change to changes associated
with severe clinical manifestations. This classification scheme has been accepted by the
American Heart Association.

CHD can remain asymptomatic. This occurs in the presence of lesions up to type
III. CHD associated with the presence of type IV or higher lesions can lead to serious
complications such as angina pectoris, acute myocardial infarction, silent ischemia,
arrhythmias, left ventricular dysfunction, ischemic cardiomyopathy or sudden death.

1.1.4 CHD Assessment through Computed Tomography Angiography

The standard of reference for diagnosis of CHD still is conventional coronary angiogra-
phy (CCA) (Figure 1.3). The greatest advantage of conventional angiography is high
spatial resolution and the option of direct performance of interventions such as balloon
dilatation or coronary stent placement. However, only one-third of all conventional
coronary angiographic examinations in the United States are performed in conjunc-
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1. INTRODUCTION

Table 1.1: Stary’s classification of atherosclerotic lesions. Atherosclerotic lesions
classification as proposed by Stary (2000) and accepted by the American Heart Association.

Classification Description
Type I Microscopically and chemically detectable lipid deposits in the

intima and the cell reactions associated with such deposits. No
tissue injury.

Type II Fatty streaks. Streaks may be visible as yellow-colored streaks,
patches, or spots on the intimal surface of the artery.

Type III Microscopic evidence of tissue injury. Also called preatheroma.
Type IV Extensive lipid core, massive structural injury. Also called

atheroma.
Type V Increased amount of smooth muscle and collagen. It can be

multilayered (several lipid cores, separated by layers of fibrous
connective tissue that are stacked irregularly). Denoted as fi-
broatheroma.

Type VI Development of disruptions of the lesion surface, hematoma or
hemorrhage, and thrombotic deposits

Type VII The dominant feature of the lesion is the presence of calcium.
Type VIII The normal intima is replaced and thickened with fibrous con-

nective tissue. The lipid core is minimal or absent

tion with an interventional procedure, while the rest are performed only for diagnostic
purposes (Schoepf et al., 2004). Furthermore, because of its invasive nature, CCA has
a low, but non-negligible, risk of procedure related complications (Zanzonico et al.,
2006). Given the high incidence of coronary artery disease, performing coronary an-
giography for diagnostic purposes seriously affects limited health-care resources. On
the other hand, it is preferable for a patient not to undergo an unnecessary and po-
tentially risky invasive test, if a reliable noninvasive imaging modality to visualize the
coronary arteries is available.

A surprisingly rapid development of CT technology over the past 6-8 years, espe-
cially the introduction of 64-slice CT with gantry rotation times well below 500 ms,
has made imaging of the heart and coronary arteries be CT possible in a clinical set-
ting (Achenbach, 2007) (Figure 1.4). CT is a noninvasive technique that allows, next to
the assessment of the coronary lumen, the evaluation of the presence, extent, and type
of coronary plaque (Leber et al., 2004; Schroeder et al., 2001). Such non-invasive, com-
prehensive plaque assessment may be relevant for improving risk stratification when
combined with current risk measures: the severity of stenosis and the amount of cal-
cium (Schroeder et al., 2001). The latter represents an advantage w.r.t. CCA that
only provides information on the coronary lumen. Nevertheless, CT cannot distinguish
among all types of plaque. It is capable of differentiating between calcified and soft
plaque (Figure 1.5), but it can hardly distinguish the different types of soft plaque.

Although accuracy for the detection of hemodynamically relevant coronary artery
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1.1 Medical Context

Figure 1.3: Conventional Coronary Angiography - The arrow shows a detected
stenosis. Source: (Achenbach, 2007))

(a) (b)

(c)

Figure 1.4: Cardiac CT - Multi-planar reformation (MPR) view of a 3D cardiac data
set. (a) axial view, (b) coronal view and (c) sagittal view.
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(a) (b)

Figure 1.5: Visualization of atherosclerotic plaques in CT - Visualization of
atherosclerotic plaques using a curved planar reformation (CPR) view. (a) The arrow
points to a calcified plaques along the LAD (b) The arrow points to a soft plaque in the
LAD. Images obtained using MeVisLab.

stenoses is high for state-of-the-art multidetector CT (MDCT) systems (Achenbach,
2007) and despite its potential as a diagnosis tool for CHD, the use of CT still raises
several concerns. One of the principal concerns is that CT yields higher radiation doses
than traditional CCA (Lesage, 2009). In the following, some of the major difficulties
of CT technology that affect CHD diagnosis are described.

Characteristic Hounsfield Units of the Plaque

In a CT image, each pixel is assigned a numerical value (CT number), which is the
average of all the attenuation values contained within the corresponding voxel. This
number can be represented in terms of Hounsfield Units (HU).

The HU scale is a linear transformation of the original linear attenuation coefficient
measurement into one in which the radiodensity of distilled water at standard pressure
and temperature (STP) is defined as zero Hounsfield units (HU), while the radiodensity
of air at STP is defined as -1000 HU. For a material X with linear attenuation coefficient
µX , the corresponding HU value is therefore given by

HU =
µX − µwater
µwater − µair

× 1000 (1.1)

where µwater and µair are the linear attenuation coefficients of water and air, respec-
tively. These standards were chosen as they are universally available references and
suited for the purpose for which CT was developed: imaging the internal anatomy.
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Figure 1.6: Example of HU ranges - Example of HU ranges for selected tissues. Blood
is meant with contrast-enhancing agent injected. Source: (Saur, 2009).

Although one can find in literature HU ranges for certain tissues (Figure 1.6),
there is no consensus on their actual bounds. More particularly, neighboring ranges
partially overlap. As an example, in literature it is not possible to find clearly defined
thresholds that differentiate plaque components as a function of the Hounsfield Units.
Saur (2009) summarized the ranges proposed by different studies on CT images aiming
at the detection of coronary plaques. Results demonstrate that there is not a general
consensus (Table 1.2). Moreover, additional difficulties arise from the fact that some of
these values overlap with the intensity ranges that are proposed for vessel lumen. This
mainly comes from the use of the contrast material that modifies the radio-opacity of
the blood in order to permit the visualization of the lumen. As an example, let us cite
de Weert et al. (2008) who used a threshold of 130 HU for calcifications and had to
resort to manual separation between them and contrast-enhanced arterial blood, since
the latter reached on average 217.4± 36.9 HU, which clearly overlaps with the calcium
range. Although the quoted work reports results in carotid arteries, the same can be
observed in coronaries.

Temporal and spatial resolution

Coronary arteries undergo heterogeneous movement and deformations throughout the
cardiac cycle causing motion artifacts. ECG synchronization is performed to reduce
cardiac motion and minimize artifacts. Retrospective ECG gating is a method that is
based on the simultaneous acquisition of CT data and the ECG signal. The acquired
projected raw data are selected for image reconstruction with respect to a predefined
cardiac phase (also denoted time-frame or time-point). However, when the velocity
exceeds the temporal resolution of the scanner (Husmann et al., 2007) motion artifacts
cannot be avoided. Moreover, frequently there are diverging motion patterns between
the left and right coronary systems and often also between proximal and distal por-
tions of the same coronary artery (Lu et al., 2001) leading again to motion correction
problems.

Coronary arteries are relatively small and thin. Typically, they have radii in a range
from 1 to 10 voxels. The temporal and spatial resolution of CT is still somewhat limited
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Table 1.2: Reported HU value ranges of lipid, fibrous, and calcified tissue. HU
value ranges (mean ± std) for lipid, fibrous, and calcified tissue as reported in various CT
studies. Namely, I:(Schroeder et al., 2001), II: (Leber et al., 2004), III: (Brodoefel et al.,
2008), IV: (Hein et al., 2007), V: (Pohle et al., 2007), VI: (Carrascosa et al., 2003), VII:
(Motoyama et al., 2007) and VIII: (Sun et al., 2008). Voltage and current parameters are
also reported to ease comparison. Table information obtained and adapted from (Saur,
2009)

Study Lipid Fibrous Calcified Voltage Current
(kV) (mA)

I -42 - +47 61 - 112 126 - 736 140 60
(14 ± 26) (91 ± 21) (419 ± 194)

II 14 - 82 34 to 125 162 to 820 120 450
(49 ± 22) (91 ± 22) (391 ± 156)

III -10 - +69 70 to 158 > 437 120 400
IV -100 - +20 20 to 130 350 to 1000 - -
V -39 - +167 60 - 201 - 120 -

(58 ± 43) (121 ± 34) -
VI (76 ± 44) (149 ± 37) (449 ± 221) 120 360
VII -15 - +33 32 to 130 221 to 1134 135 400

(11 ± 12) (78 ± 21) (516 ± 198)
VIII 7 - 149 22 - 154 295 - 1325 120 - 135 350 - 450

(79 ± 34) (90 ± 27) (772 ± 251)

8
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relative to the rapid motion and small dimensions of the coronary arteries (Achenbach,
2007). In consequence, due to their reduced size, coronary arteries can be seriously
affected by the partial volume effects and reconstruction artifacts caused by motion.

(a) (b)

Figure 1.7: Effects of coronary motion - Same CT slice at different instants of the
cardiac cycle (after rigid registration). The coronary artery pointed by big diagonal arrows
is better depicted in (a), while some other regions (small arrows) are more contrasted in
(b).

Figure 1.7 illustrates the effects of motion in image quality. The same 2D slice of
the heart is presented at different heart cycle phases. While Figure 1.7(a) presents a
normal separation between the left coronary artery and the neighboring cardiac cham-
ber, Figure 1.7(b) contains an artifact that locally alters the image contrast. Vessel
segmentation using the right image would lead to an erroneous result that leaks into
the cavity. An analysis, slice-by-slice, of the 3D images demonstrates that this situation
is very common: arteries are well defined in some heart phases while in others they are
severely altered. This type of situation can lead to what is illustrated in Figure 1.8.
The 3D reconstruction shows an interruption of the vessel. This can be a stenosis or it
can be produced by a motion artifact.

As a consequence, radiologists are obliged to visualize the vessel of interest in differ-
ent phases, typically one at diastole and another at systole, in order to create a mental
image model that will allow them to give a diagnosis. As a consequence of movement,
the spatial location of the structures of interest is not preserved between phases. The
radiologist needs to search for the structure of interest at different locations in each
evaluated phase. The amount of data in CT acquisitions is large (typically 512 × 512
× 512 voxels per phase), which makes this manual labor time consuming.
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Figure 1.8: 3D reconstruction of the heart and coronary arteries - The recon-
struction shows an interruption in the vessel (arrow). This can be caused by a stenosis or
an image artifact.

Acquisition protocol

There is no general consensus on the protocol that should be followed in CT image
acquisition for CHD diagnosis. A wide range of studies on the assessment of CHD using
CT found in literature use different protocols. Table 1.3 compares four studies for CHD
diagnosis using the same CT technology. Although even three of the studies use CT
scanners from the same vendor, the protocols differ from each other. Furthermore, the
information provided by each study is different which makes difficult the reproducibility
of the acquisitions.

With the lack of a standardized acquisition protocol, image quality and dynamics
can significantly vary from one center to another, which makes the evaluation more or
less difficult. Even with the same acquisition protocol followed within a given center,
significant differences between acquisitions may occur. Figure 1.9 illustrates such an
example, which can be explained by different circulation time between the contrast
injection and the actual acquisition from one patient to another. As a consequence,
Figure 1.9 (c) shows a high quality image whereas the result shown in Figure 1.9 (d) is
of low quality. The dynamics of both images differs substantially (Figures 1.9(e) and
(f)).

Evaluation protocol

The analysis, interpretation, and documentation of coronary CT examinations are com-
plex and not sufficiently standardized (Schoenhagen et al., 2004). Although there are
common practices among physicians there is not a well established universal evaluation
protocol.

Two types of visualization are common in CHD assessment. The first one is multi-
planar reformation (MPR), where the radiologist scrolls through the 2D slices of axial,
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Table 1.3: Examples of CT acquisition protocols. Comparison of 4 CT acquisition
protocols used in the study of CHD detection. For a fair comparison, studies using CT
scanners with the same number of slices (16) were kept. Protocol I denotes (Achenbach
et al., 2004), II is (Caussin et al., 2004), III is (Leber et al., 2004), IV is (Pohle et al., 2007)
and V is (Motoyama et al., 2007).

Parameters I II III IV V
Scan

Collimation (mm) 12 × 0.75 - 12 × 0.75 16 × 0.75 16 × 0.5
Table feed (mm) 2.8 - - - -
Rotation (ms) 420 420 - 420 or 375 400
Voltage (kV) 120 - 120 120 135
Tube current (mA) 400 - 450 (55% of - 360

cycle). 80%
reduction for

remaining time
Radiation dose (mSv) 4.3 - 4.3 - -

Contrast
Agent - - Solutrast 300 -
Quantity (mL) 80 100 80 60 80
Injection rate (mL/s) 4 - 5 4 or 5 3

Reconstruction
Algorithm ECG half - - ECG half -

scan scan
Temporal resolution 210 210 210 or 188 75

(ms)
Kernel B35f - - B35f -
Slice thickness (mm) 1.0 0.75 - 1.0 -
Increment (mm) 0.5 0.5 - 0.5 -
Pixel size (mm) - - 0.39 × 0.39 - -

Scanner
Model Sensation Aquilion
Vendor Siemens Toshiba
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(a) (b)

(c) (d)

(e) (f)

Figure 1.9: Quality variation in cardiac CT images - Two CT images acquired at
the same medical center. (a) and (b) show the original window-level configuration. (c)
A high quality image where the vessels are well contrasted (d) Bad quality image with
low contrast and image artifacts. The corresponding image histograms are shown in (e)
and (f). The red lines denote the limits of the selected window on each image to visualize
arteries and the dashed line represents its center.
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coronal and sagittal views (Figure 1.4). The second one is curved planar reformation
(CPR) (Kanitsar et al., 2002). The goal of CPR visualization (e.g. Figure 1.5) is to
make a tubular structure visible in its entire length within one single image (Kanitsar
et al., 2002), so that the radiologists can sweep through the vessel searching for possible
lesions. The CPR display mode requires a previous extraction of the centerline of the
tubular structure of interest.

1.2 Computer-Aided Diagnosis (CAD)

Computer-aided diagnosis (CAD) is a rapidly expanding area of medical image analysis
that aims to help clinicians in making a proper diagnosis by, for example, detecting ab-
normalities, classifying and diagnosing these, and quantifying the spread of disease (van
Ginneken, 2010). In general, CAD systems aid the radiologist in order to enable a faster
or more accurate and reproducible diagnosis.

Figure 1.10: CAD system - Image-based CAD system architecture and its incorporation
into medical diagnosis. Adapted from (Lu et al., 2009).

Typically, image-based CAD systems consist of four main modules (Lu et al., 2009)
(Figure 1.10).

� Image pre-processing stage aims at improving image quality by denoising and
artifact reduction. It can also handle data standardization that allows comparison
of images obtained under different conditions.

� Region of interest (ROI) definition seeks to reduce the size of the analyzed data
by defining local regions where a lesion can be found. ROI definition can be done
manually, semi- or fully automatically. Segmentation of the structures of interest
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also applies to this module. In that case, subsequent analysis is performed on the
segmented structures instead of a defined ROI.

� Feature extraction deals with the obtainment of measurements from the pre-
processed images. These measurements are subsequently used to identify the
lesion. Since the amount of measurements can be very large, optionally, a subse-
quent step of feature selection can be performed. Here, the most robust features
are kept in order to improve classification and speed up the process.

� Classification uses the extracted features to detect abnormalities in the datasets.
Typically, classification first requires a training stage were training samples are
provided so that a classification function is inferred. The obtained function is
later used to classify new samples of data. Depending on the type of training
data, classification can be either supervised or unsupervised. Supervised learning
infers a classification function from labeled training data. Each sample of labeled
data is made up of a pair consisting of an input (a feature vector) and a desired
output (a label denoting normality or abnormality). Contrarily, unsupervised
learning does not require labeled samples. This type of algorithms only requires
the input feature vector to infer the classification function.

1.3 Our Approach

Owing to all the difficulties mentioned in section 1.1.4, CHD assessment by means of
CT remains a difficult task. It is necessary to acquire sufficient experience to reliably
diagnose CHD, and it has been demonstrated that acquiring moderate expertise in coro-
nary CT angiography is slow and may take more than 1 year (Pugliese et al., 2009). In
addition, up-to-date, the assessment of CHD is done by manually searching anomalies
at a selected time-point of a dataset, which are subsequently confirmed/rejected using
one or several additional time-point(s). Although existing platforms provide aid tools,
the whole process exclusively relies on the reader’s expertise since there are no univer-
sally accepted evaluation protocols. The associated difficulties and the large amount
of data that needs to be processed makes CHD assessment a potential application for
CAD systems.

Section 1.3.1 gives an overview of the working scheme that we propose with the aim
to reduce the difficulty in the CHD diagnosis and assessment. Afterward, Section 1.3.2
presents the specific contributions of our work.

1.3.1 Overview

In this work we propose to formulate a methodological framework, inspired from CAD
systems, that aims at reducing the time devoted to the evaluation of CT datasets for the
diagnosis of CHD. Our final goal is to identify potential locations for vascular lesions
so as to call the attention of the physicians. Additionally, we mimic the physician’s
procedure, by registering the detected lesions at one time-point (typically systole) with a
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second time-point (typically at diastole) so as to provide different sources of information
of the potential lesion to the physician. We consider that this proposal represents an
advantage w.r.t. existent systems in two key aspects:

1. It eases the vascular lesion identification by marking potential lesions on a partic-
ular dataset so that the physician does not have to perform the search task but
only confirm/reject.

2. It reduces the time devoted to navigation through different cardiac phases since we
propose a scheme to register each potential lesion with a second image. Therefore,
the physician has all the required information to provide a diagnosis without the
necessity to search for it.

To achieve our goal, this thesis investigates the design of classification strategies
in unsupervised and semi-supervised environments. We focus on these two types of
environments because we want to avoid or minimize the dependence on labeled data.
The obtainment of accurate and representative labeled data is an expensive task that
we want to avoid.

Our research has also pointed to the development of strategies for feature construc-
tion and selection. We have evaluated how these features influence the accuracy of the
classification results in unsupervised and semi-supervised environments.

1.3.2 Contributions of this Thesis

Problem formulation. We have formulated the vascular lesion identification as an
anomaly detection problem (Section 2.3). The anomaly detection philosophy has
been successfully applied to other domains and, to the best of our knowledge,
we are the first to propose such an approach in the vascular imaging domain.
Under this perspective, we have chosen to formulate our problem as a density
level detection (DLD) problem and we have selected to solve it through the use
of support vector machines (SVM). One of the motivations of our approach is to
avoid or minimize the dependence on labeled data. Depending on the availability
of labeled data for the training stage, we introduce two different algorithms. The
first one, denoted DLD-SVM, is completely unsupervised, whereas the second
one, denoted learning from positive and unlabeled samples (LPU), requires labels
from only one of the classes.

Definition of metric. We have developed a metric, denoted Concentric rings, that
is well adapted to the anomaly detection problem (Section 2.4.1). This metric
has been designed so that it can model normality inside a 2-D cross section
centered in the vessel axis. Concentric rings captures the intensity profiles
and the axial symmetry of normal vessel, by computing intensity integrals in
sectors subdividing each ring (Figure 1.11). Furthermore, we have proposed to
combine various features in order to increase the discriminative power of the
detection. To this purpose, we have proposed the use of known measures that were
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initially designed as vesselness criteria for vascular enhancement / segmentation
(Section 2.4.2). Our selection is motivated by the good response of these metrics
in normal regions (lumen), while having responses that deviate from the normality
in the presence of a lesion. Concentric rings metric showed the best individual
performance in DLD-SVM, it was ranked third in LPU and it is always among
the group of selected metrics that make up the best feature set.

Feature selection scheme. In order to define a strategy to select the set of met-
rics that best fits our problem, we have introduced two novel feature selection
schemes associated to DLD-SVM and LPU methods (Section 2.5.1). The pro-
posed approach exploits the information provided by the two algorithms, more
precisely the empirical risk, to be used as a selection criterion. This methodology
can therefore be either unsupervised, if used with DLD-SVM or semi-supervised if
LPU is employed. We compared the anomaly detection performance when using
thus selected subsets of features, with the results based on conventional super-
vised selection schemes. The feature subsets obtained through our two methods
gave out the best detection results.

Performance improvement. We have proposed a scheme to improve the perfor-
mance of the LPU method by progressively increasing the associated training
data sets (Section 2.3.4). This algorithm refinement seeks to reduce undesired
effects of classifiers caused by finite samples. We propose to incrementally add
samples to the labeled dataset, while also adding new unseen data to the unla-
beled data set. The process can take advantage of progressive inclusion of new
patients through time, as well as of new detection results validated by experts in
routinely use of the system. A minor contribution that also enhances the overall
performance resides in a selection of an algorithm, not so well-known, which can
be applied as an additional step in the learning phase in any algorithm based on
SVM (Section 2.3.5). The selected method seeks the improvement by an addi-
tional variation of one of the parameters of the learnt decision function of the
SVM.

Inter-phase registration to validate detection. We propose a strategy to validate
potential lesions that is inspired in a common diagnostic procedure followed by
physicians in cardiac CT. The method consists in confronting information from
different cardiac phases to give out a final diagnosis. We propose to register
the lesions detected at one phase with a second one in order to compare the
information of both volumes the way physicians do (Section 5.3).

1.4 Outline

This document is organized as follows:
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(a) (b)

Figure 1.11: An example of the proposed Concentric rings metric - (a) Healthy
coronary cross-section (b) Color-coded visual representation of the metric response. The
colors encode the normalized values of intensity integrals within each sector of each ring.

Chapter 2 describes the proposed methodological framework and all the necessary
steps required to construct it. First, we discuss the hypothesis over which our
proposal is based and then we describe each of the elements that compose it. The
framework is made up of three main elements that are largely described in the
chapter. These are: the classifiers, the metrics and the feature selection strategy.

Chapter 3 is devoted to the experimental design of the metric we have proposed to
use in our framework. Once the metric is properly tuned up, the remaining
candidate metrics are also parametrized, so that they can be directly compared
to our approach. Additionally, the evaluation protocol followed in the different
experiments is described.

Chapter 4 is devoted to the selection of an optimal feature set based on the different
sets of candidate metrics that were defined in Chapter 2 and parametrized in
Chapter 3. The performance of the metrics is first individually evaluated and
this information is used to define in which order they will be evaluated by the
different feature selection algorithms. The quality of the selected group of metrics
is assessed through its use as inputs for the selected classifiers.

Chapter 5 introduces a methodology that eases the task of comparing different phases
to formulate a diagnosis of CHD. The method constructs a ROI surrounding
potential lesions and maps the ROI to a different time-point. The two ROI
are then non-rigidly registered. The two registered ROIs are compared so as to
confirm / reject potential lesions.

A final chapter is devoted to give overall conclusions and point out research per-
spectives.
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2

Automatic Detection of Vascular
Abnormalities: Framework
Definition

Glossary

In the present chapter, several expressions will be used, which may have different mean-
ings in various fields, namely in the medical and statistical domain. To avoid misun-
derstandings, we provide definitions that will be used along the chapter.

Abnormality. In a wide sense, something deviating from the normal or differing from
the typical.

Anomaly. In a restrictive meaning (Barnett and Lewis, 1994), an observation (or
subset of observations) that appears to be inconsistent with the remainder of the
considered set of data. It is also referred to as outlier.

Lesion. In medicine, abnormal alteration of organ morphology and/or tissues due to
a disease or trauma. In our case, we consider arterial lesions that include the
alterations of vessel wall and lumen, typically due to atherosclerosis.

Anomaly detection. Refers to detecting patterns in a given data set that do not
conform to an established normal behavior (Chandola et al., 2007).

Classification. As defined in the fields of machine learning and pattern recognition,
classification is a procedure that assigns each piece of input data (instance) into
one of a given number of categories (classes). Binary classification refers to a
particular case of classification where only two classes are involved.

Learning. Refers to evolving the behavior of the computer, based on empirical data
(examples), in order to improve decisions or recognition of complex patterns.
Formally, an algorithm is said to learn from an experience E with respect to
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some class of tasks T and performance measure P , if its performance at tasks in
T , as measured by P , improves with experience E (Mitchell, 1997).

2.1 Introduction

It has been demonstrated that acquiring moderate expertise in coronary CT angiog-
raphy is slow and may take more than 1 year (Pugliese et al., 2009). Discontinuities
due to stenoses, contrast variations due to calcifications and nearby structures (e.g.
heart chambers) and artifacts provoked by heart and respiratory movement during the
acquisition, cause undesired effects in the image quality and difficult medical diagnosis.
These effects lead to long evaluation times and may cause errors in the diagnosis of
the coronary disease (Pugliese et al., 2009). Therefore, a tool that can automatically
identify potential vascular lesions and call the attention of the physician is desirable.

Most of the algorithms focused on the identification of vascular lesions share the
characteristic that they are directed towards abnormality modeling, i.e. identifying the
particularities of lesions. However, lesions are heterogeneous by nature, so obtaining a
model that copes with all possible abnormalities remains a challenge for this type of
approach. In consequence, manual interaction is required to retrieve undetected lesions.
Furthermore, since these methods rely on the identification of a particular lesion, (i.e.
an aneurysm, an atherosclerotic plaque or a particular type of plaque), they are not
capable of detecting other types of abnormalities.

Recently, a novel technique (Kang et al., 2009; Wong and Chung, 2006) has been
proposed to overcome the weaknesses of the classical approaches. Here, abnormalities
are identified by modeling their opposite: the normal vessels. Wong and Chung (2006)
use a simple shape of normal vessels to identify different vascular abnormalities (e.g.
stenotic atherosclerotic plaque, saccular and fusiform aneurysmal lumens) in an indirect
fashion, instead of directly manipulating the complex-shaped abnormalities. Although
the method is reported to be highly accurate, it does not work over gray-scale images
but on topologically and morphologically correct vascular segmentations, which can
imply a significant amount of user interaction.

Likewise, Kang et al. (2009) use an active tube model that can be deformed to
be registered onto the vessel lumen. In their work, three types of regions are defined:
normal, stenotic, and aneurysmal, to classify the vessel segment analyzed by the use of
an algorithm based on a cross-sectional distance field.

We propose a method that aims at accurate identification of vascular lesions with
minimal user interaction. Our approach relies on machine learning (ML) techniques.
Although a few state-of-the-art methods use ML techniques, we differ in two key points.

1. We neither model nor try to directly identify particular abnormalities. Our pro-
posal follows a similar strategy as (Kang et al., 2009; Wong and Chung, 2006),
where normal vessels are modeled in order to identify lesions. We assume that
lesions can be considered as local outliers compared to the typical appearance of
a healthy artery. Therefore, we define image features that allow the description
of normality and the indirect detection of the lesions.
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2. The training stage can be performed without or with a small amount of labeled
data. Actually, one solution requires no labeled data, while the second solution
requires labels only for normality.

In the following sections, we first review state-of-the-art methods that tackle the de-
tection of vascular lesions (Section 2.2). Section 2.3 is devoted to the description of the
detection approaches we propose. This is followed by the definition of a set of candidate
features to be used in the classification task (Section 2.4), where we describe a metric
that we have developed, as well as other features that we have adopted from literature.
Finally, section 2.5 presents the methodology that we followed to select features from
the candidate set. Validation of the methods here described is left for Chapter 4.

2.2 Related Work

Although several algorithms exist for the identification of lesions in arteries such as the
carotids, particularly using MR images (Adame et al., 2004; Lekadir and Yang, 2006;
Salvado, 2006), and in a smaller measure using CT (Vukadinovic et al., 2010), not so
many methods have been proposed to be applied in the coronary arteries. Using the
target lesion to be detected, methods can be classified into three categories. These are:
calcified plaque-oriented (section 2.2.1), soft plaque-oriented (section 2.2.2) and hybrid
methods (section 2.2.3).

2.2.1 Calcified Plaque-Oriented Methods

The calcified plaque-oriented category represents a vast majority of the methods deal-
ing with the identification of lesions in coronary arteries. Toumoulin et al. (2003) use
a level-set approach devised to extract the outer and inner boundary of the vessel wall.
Calcified plaques are identified within thus delimited region. Komatsu et al. (2005)
define a Plaque Map based on a color-based isometric line method, which colors the
relevant limit of CT numbers, and the Bird’s Eye View, which shows 3D-contour images.
The map serves as visual aid for manual identification of calcified plaque components.
Wesarg et al. (2006) segment vessels while excluding calcifications. Since regions con-
taining calcifications have a lower mean diameter, they combine diameter information
with intensity analysis to detect calcified plaques. Dehmeshki et al. (2007) apply a
threshold and identify connected regions that exceed the threshold. Manual selection
of one (or more) of the connected regions is performed for subsequent quantification
through a Modified Expectation-Maximization algorithm. Išgum et al. (2007) propose
a learning-based scheme where candidates for coronary calcifications are extracted by
thresholding and component labeling. Then, 64 image features are extracted and used
as input for a two-stage classification. Their method has been tested exclusively in
non-contrast enhanced CT. Using electron beam CT (EBCT), Brunner et al. (2008) in-
vestigate unsupervised classification to distinguish arterial calcified plaques from bones,
metal stents or any other metallic objects that, due to their density (image intensity
value) can be mistaken for calcifications. The method first mines the characteristics
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of calcified lesions using an optimization criterion and then identifies a subset of lesion
features optimal for classification. A two stage clustering is deployed to discriminate
between lesions and other candidate regions. Also using EBCT, Kurkure et al. (2008)
propose a supervised hierarchical classification-based approach to distinguish the coro-
nary calcifications from other candidate regions. At each level of the hierarchy the
method learns an ensemble of classifiers where each classifier is a cost-sensitive learner
trained on a distinct asymmetrically sampled data subset. After aorta detection and
coronary tree segmentation in a CT angio (i.e. with contrast agent) data set, Saur
et al. (2008) extract putative calcification candidates using an intensity-based thresh-
old, which results in many false positive (FP) plaques. In a following step the plaques
with the highest rank are rigidly registered to plaques in native CT scans (i.e. without
contrast agent). Finally, a rule based approach is used to maximize the number of
detected plaques while minimizing FP.

2.2.2 Soft Plaque-Oriented Methods

Contrary to calcified plaque detection, to date the methods devoted to soft plaque
detection in coronary CT are quite limited. Renard and Yang (2008) proposed a method
consisting of three steps: extraction of the arterial lumen centerline, segmentation
of the lumen and arterial wall separately with locally adaptive region growing, and
detection of soft plaques based on effective cross-section areas of the lumen and of
the wall. The soft plaque detection criterion is based only on area difference which
makes the method prone to errors. Lankton et al. (2009) propose an algorithm based
on a localized active contour framework that employs a scale parameter to restrict the
statistical characteristics of the vessel into local regions. Simple probabilistic models
based on local means are used to extract the vessel and find areas where soft plaques
exist. Makrogiannis et al. (2009) introduce nonparametric intensity priors of foreground
and background objects into a local, nonparametric dissimilarity measure as a speed
function term in the level set framework. They use a database of vessels with positive
wall remodeling to demonstrate the capability of the method to extract hypodense
regions associated with soft plaques.

2.2.3 Hybrid Methods

Similarly to soft plaque-oriented methods, only few hybrid methods have been reported
for CT images. To the best of our knowledge, the first method aiming the detection of
different types of plaques is the one proposed by Rinck et al. (2006). Their approach
uses two surface representations, one for the contrast-filled vessel lumen and one for the
vascular wall. The deviation between these two surfaces is defined as plaque volume. A
histogram of the intensity distribution is calculated and presented to the user. The user
adjusts thresholds, which divide the histogram into different ranges that are assigned
plaque components. Tessmann et al. (2008, 2009) use a learning-based approach where
they train a classifier using the AdaBoost algorithm (Freund and Schapire, 1995) to
detect both calcified and soft plaque lesions. As input for the training stage, they
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use features based on a sampling pattern that approximates the vessel shape. More
recently, Arnoldi et al. (2010) evaluated a CAD algorithm that first extracts calcified
lesions. Non-calcified plaque is detected as a hypoattenuating area between the external
vessel boundary and lumen without calcium. The latter is done under a learning-based
approach. However, the description in the article does not provide sufficient details of
the method.

2.2.4 Overview

There are still few methods that try to tackle the lesion identification as a whole
(i.e. hybrid methods). Most existing methods focus in a particular type of lesion.
Among the methods that try to identify all types of lesions, two main drawbacks can
be identified. First, methods such as the one proposed by Saur (2009) require either
a double CT image acquisition,i.e. with- and without contrast enhancement, which is
not desirable for a patient owing to increased radiation dose, or Dual CT images that
are not available in clinical routine in most medical centers. Second, methods based
on learning approaches strongly rely on the availability of labeled data that represent
all type of possible pathological behaviors. In practice, this is not often possible. In
the following, we propose a framework that tries to overcome all the above mentioned
challenges. We propose a methodology that aims at identifying all types of vascular
lesions requiring only a contrast enhanced acquisition. Moreover, we propose a learning-
based approach that minimizes the necessity of labels and thus reduces the dependency
on labels and human-induced errors.

2.3 Definition of a Classification Strategy

Classification methods based on ML techniques have been extensively used in breast
and lung cancer diagnosis. However, as previously shown, only a few approaches tackle
vascular lesion identification from a ML point of view. Moreover, only one of the pre-
sented methods (Tessmann et al., 2008, 2009) aims at detecting several types of lesions.
Nevertheless, we have chosen to follow a learning-based approach for several reasons.
First, this type of approach has been proven robust in other medical domains. As a
consequence, there is an increasing interest in the medical image processing community
to investigate this category of methods 1. Second, and most important, objects such as
lesions in medical images are highly heterogeneous, so it is difficult to model them ac-
curately through equations. Therefore, the possibility of learning from examples arises
as a promising alternative. With respect to the previous classification approaches that
tackle vascular lesions, our proposal differs in two main aspects: very limited use of
labels and absence of any attempt to explicitly model the lesions.

A label associated to a data instance denotes if the latter is normal or abnormal.
In applications involving diseased organs, it is often very expensive to collect labeled

1As an example, the first international Machine Learning in Medical Imaging workshop http:

//miccai-mlmi.uchicago.edu/

23

http://miccai-mlmi.uchicago.edu/
http://miccai-mlmi.uchicago.edu/


2. AUTOMATIC DETECTION OF VASCULAR ABNORMALITIES:
FRAMEWORK DEFINITION

data that are accurate, as well as representative of all type of behaviors. Frequently,
only unlabeled samples are available. Hodge and Austin (2004) and Chandola et al.
(2007) define three different categories for learning-based algorithms 1 based on the
availability of labels. Hodge and Austin (2004) denote these categories as Type 1, 2
and 3 approaches, while Chandola et al. (2007) use more explicit names: Unsupervised
(type 1), supervised (type 2) and semi-supervised (type 3). We keep the more explicit
names as proposed by Chandola et al. (2007). The definition of each category is as
follows:

Unsupervised learning. Detects outliers with no prior knowledge of the data. The
approach processes the data as a statistic distribution, pinpoints the most remote
points, and flags them as potential outliers.

Supervised learning. Models both normality and abnormality. It requires pre-labeled
learning data, where every sample is marked as either normal or abnormal.

Semi-supervised learning. Models only one class. Typically, the modeled class is
normality. Few techniques exist that model the anomalous instances from training
data, since it is difficult to obtain a training data set that covers every possible
abnormal behavior that can occur in the data.

With the exception of Brunner et al. (2008), all of the ML-based approaches aiming
at the detection of vascular lesions follow a supervised classification scheme. The main
advantage of supervised learning is its high accuracy in detecting many kinds of known
lesions and the accuracy of the normal learnt behavior. However, there are several
drawbacks. First, such methods rely on the availability of accurate and representative
labels, which is often not possible and, furthermore, it is expensive and time consuming
to obtain them. Second, supervised methods are incapable of detecting new emerging
abnormalities. Since lesions are by nature heterogeneous, unknown abnormal patterns
can often appear.

To overcome the intrinsic problems that arise from the use of supervised learning in
the identification of abnormalities, in a general meaning, we propose the use of methods
that minimize the dependence on labeled datasets. To do so, we formulate our problem
as an anomaly detection problem, in the restrictive meaning of this expression (Chan-
dola et al., 2007; Hodge and Austin, 2004; Markou and Singh, 2003a,b; Patcha and
Park, 2007). Following the definition from Barnett and Lewis (1994), we consider that
an anomaly can be defined as an observation (or subset of observations) that appears to
be inconsistent with the remainder of the considered set of data. With this definition,
we consider that lesions can be regarded as anomalies that appear inconsistent w.r.t.
healthy vessel sections. While state-of-the-art methods try to find two different classes:
normality and abnormality, we focus in only one class, the normality, and assume ev-
erything diverging from it is considered abnormal. Therefore, our approach refers to

1Their surveys are focused on anomaly detection problems. However, the definitions apply for
learning-based algorithms, in general.
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the problem of finding patterns in data that do not conform to expected behavior. This
formulation permits the use of semi-supervised and unsupervised learning approaches
were only labels for normality or no labels at all are required. In literature it is possible
to find a vast amount of work on anomaly detection. As an example, let us mention
the one-class SVM algorithm that is closely related to our proposal. One-class SVM
was formulated by Schölkopf et al. (2001) with the aim of detecting data outliers. We
refer the interested reader to more extensive reviews on the subject (Chandola et al.,
2007; Hodge and Austin, 2004; Markou and Singh, 2003a,b; Patcha and Park, 2007)
and to Appendix A.2 for more details on the one-class SVM algorithm. However, to
the best of our knowledge, there is no previous work on the identification of vascular
lesions following a semi-supervised/unsupervised anomaly detection approach.

In the following, we first formally describe our problem (sec. 2.3.1) followed by
the description of the methods that allow us to solve it through an anomaly detec-
tion scheme. The first one (Section 2.3.2) is unsupervised, while the second one (Sec-
tion 2.3.3) is semi-supervised. The third one (Section 2.3.4) is an extension of the second
solution, designed to improve the detection results in time by taking advantage of ad-
ditional data and of additional labels coming from previous correct classifications. We
also describe a post-processing method capable of further improvement of the anomaly
detection by any of these methods.

2.3.1 Problem Formulation

Let us denote Q = (x1, ..., xn) ∈ Xn a collection of samples independent and identically
distributed (i.i.d) with respect to a probability distribution PQ in a space X. These
samples represent the a priori information we have for our anomaly detection problem.
In practice, the sample set can be either labeled or unlabeled. If Q contains no labels at
all, our goal will be to decide for each xi whether or not it belongs to the normal class.
Otherwise, if Q is labeled, we assume there is a second subset of unlabeled samples
X = (x′1, ..., x

′
n′) ∈ Xn

′
i.i.d. with respect to a distribution PX , which we want to

classify.
Two density-based functions or similarity measures (Porter et al., 2009) are defined

over Q and X. The first measure is the content density h, which quantifies the absolute
concentration of PQ and is given by the Radon-Nikodym derivative:

h :=
dPQ
dµ

, (2.1)

where µ is a (known) reference measure. Usually, the reference µ is chosen to be the
Lebesgue measure (Hush et al., 2005). The second similarity measure is the relative
content density % that quantifies the concentration of PQ w.r.t. PX and defined as:

% :=
dPQ
dPX

, (2.2)

where it is assumed that % is well defined.
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Given a threshold ρ > 0, the set {x ∈ X : h > ρ} is denoted as the ρ-level set of the
density h. Let us recall that anomalies are assumed to be points with a low probability
density value. Therefore, it can be stated that the set {h ≤ ρ} of points below a
threshold level ρ > 0 comprises the anomalous set, while its complement {h > ρ} is
called the normal set (Hush et al., 2005).

To interpret the density %, let us assume that some samples in X are generated by
PQ while the remaining ones are generated by another distribution PO. Thus, PX is a
mixture distribution:

PX = βPQ + (1− β)PO, where 0 < β < 1. (2.3)

With an appropriate choice of t, the set {x ∈ X : %(x) > t} consists of samples that are
more likely to be generated by PQ than by PO. In this case, the samples generated by
PQ are considered as normality, while the rest are considered as anomalous.

Both similarity measure formulations seek to identify the elements for which the
density exceeds a threshold (ρ or t). To accomplish this, it is necessary to solve a density
level detection (DLD) problem. The DLD problem can be used to detect anomalies. As
already mentioned in the introduction, the anomaly detection is performed indirectly:
the normal set is estimated by identifying the elements of X that exceed the threshold,
then the anomalous set is identified with the complement of the normal set.

In the subsequent, we will formulate some of the basics for the DLD problem solu-
tion under both conditions. Depending on the type of available data, one of the two
measurements, content density or relative content density, should be used. The next
sections formulate the mathematical background of each approach, describe the data
conditions that lead to use either one of the approaches and present how the DLD prob-
lem can be solved as a classification problem. Afterwards, we introduce two methods
to improve some classification associated problems when no sufficient data is available.
The first approach is a novel proposal that is inspired in the flow of data in the clinical
enviroment. The second approach is an enhancement algorithm, not so widely used,
but for which it has been demonstrated that it can significantly improve performance.

2.3.2 Solution 1: Density Level Detection - Support Vector Machine
(DLD-SVM)

The original DLD - Support Vector Machine (DLD-SVM) problem was formulated by
Steinwart et al. (2005a,b). In their seminal work they state that to solve the DLD
problem it is necessary to find an estimate of the set {h > ρ}. For this purpose, a
real valued function f is constructed, which approximates the set {h > ρ} with the
set {f > 0}. In general, {f > 0} does not exactly coincide with {h > ρ}. Therefore,
a performance measure is needed to describe how well {f > 0} approximates the set
{h > ρ}. For measurable functions f : X→ R, the best performance measure is:

S(f) := µ({f > 0} 4 {h > ρ}), (2.4)
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where 4 denotes the symmetric difference (Figure 2.11).

Figure 2.1: Performance of function f evaluated through the symmetric dif-
ference - The symmetric difference, defined as A4 B = A ∪ B \ A ∩ B, represents the
number of cases where the function f falsely predicts a sample as belonging to the high
density region, plus the number of cases where the function f falsely predicts a sample as
not belonging to the high density region.

A DLD algorithm should seek f̂ such that S(f̂) is close to zero. Unfortunately,
there is no known and computationally feasible method to estimate it from a training
set with guaranteed accuracy. However, the problem can be reformulated by use of a
risk function.

Let now µ be a known probability measure on X, the risk defined as:

R(f) :=
1

1 + ρ
PQ(f ≤ 0) +

ρ

1 + ρ
µ(f > 0), (2.5)

Steinwart et al. (2005a) demonstrated that a function f minimizing R also minimizes S

and that there is a tight relationship between them. Thus R is a performance measure
for the DLD problem, and choosing f̂ that minimizes S can be done by choosing f̂ that
minimizes R. Moreover, unlike S, the risk R can be empirically estimated from sample
data.

The definition of R as a performance measure also permits the interpretation of
the DLD problem as a supervised binary classification problem. Given the label set
Y := {−1, 1}, let x ∈ X and y ∈ Y respectively denote the values of random variables
x and y. The binary classification problem is formed by identifying PQ and µ with
the conditional distributions Px|y=1 and Px|y=−1 respectively and defining the class
marginals P (y = 1) := 1/(1 + ρ) and P (y = −1) := ρ/(1 + ρ). It should be remarked
that DLD-SVM, in principle, is unsupervised. The only available data comes from
the unlabeled set Q. Therefore, to solve the supervised binary classification problem
surrogate labeled sets need to be created. The training set T is built as follows. First,
a set T is formed such that T = Q, and all its elements are assigned a label y = 1. For
the sake of coherence, from now on we denote |Q| = |T | = n1. Then, a set T ′ of n−1

1Illustration resulting from discussions with Dr. Don Hush, researcher in Machine Learning and
pattern recognition at Los Alamos National Library (Los Alamos, USA)
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synthetic samples is formed. These are artificially generated i.i.d. with respect to µ,
and a label y = −1 is assigned to each of them. The union of the two sets T = {T, T ′}
of size n = n1 + n−1 is used as a training set to choose a function f̂ , which minimizes
R(f̂).

Once a training data is defined for the binary classification problem it is possible
to construct a Support Vector Machine (SVM) (Cortes and Vapnik, 1995) that solves
it. Let k : X × X → R be a positive definite kernel with reproducing kernel Hilbert
space (RKHS) H. Let l : Y × R → R∗+ be the hinge loss function, i.e. l(y, t) :=
max {0, 1− yt}, y ∈ Y , t ∈ R. According to Steinwart et al. (2005a,b), for a DLD
problem with a training set T, a regularization parameter λ > 0, and ρ > 0, the SVM
chooses a decision function f that minimizes in H × R the following criterion:

λ ‖ f ‖2H +
1

(1 + ρ)
1
|T |

∑
x∈T

l(1, f(x)) +
ρ

1 + ρ

1
|T ′|

∑
x∈T ′

(l(−1, f(x))) . (2.6)

The kernel k is built using Gaussian radial basis functions e−σ
2|x−xi|2 .

Under this formulation, given a set of ρ values, the DLD-SVM approach will select
the f̂ that minimizes R. The risk is empirically obtained from the sample data through

R̂(f) =
1

1 + ρ

1
|T |

∑
x∈T

I(f(x) ≤ 0) +
ρ

1 + ρ

1
|T ′|

∑
x∈T ′

I(f(x) > 0), (2.7)

where I(·) returns 1 if the argument statement is true and 0 otherwise. The decision
function f minimizing the empirical risk R̂(f) will allow to identify the ρ value that
best reflects the concentration of normality.

2.3.3 Solution 2: Learning from Only Positive and Unlabeled Data
(LPU) approach

The second solution deals with situations where data from Q is labeled, while data
coming from X is not labeled. In this case, our goal is to detect in X, elements similar
to those from Q, denoted targets.

A binary classification problem assumes a data generating distribution as:

PX = p1PX|y=1 + p−1PX|y=−1, (2.8)

where PX|y=1, PX|y=−1 denote conditional probabilities in X given y = 1, y = −1
respectively, and p1, p−1 denote marginal probabilities. We seek a function f that
minimizes the binary classification error:

e(f) = p1PX|y=1(f < 0) + p−1PX|y=−1(f ≥ 0). (2.9)

Steinwart et al. (2005a) demonstrated that if Eq. 2.3 holds, then with t = 1
2β any

f that minimizes:
S(f) := PX({f > 0} 4 {p > t}), (2.10)
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also minimizes the binary classification error e(f), with:

p1 = β, p−1 = 1− β, PX|y=1 = PQ, PX|y=−1 = PX . (2.11)

In order to ensure that Eq. 2.11 is valid, some associations to construct a surrogate
training data from the input data are necessary. This is:

� Using unlabeled data coming from X, a new surrogate labeled data set X̄−1 is
created by assigning the label y = −1 to all the samples. As a consequence
P̄x|y=−1 = PX .

� The labeled data coming from Q builds up a surrogate labeled data Q̄ by keeping
its original label y = 1. Therefore, P̄x|y=1 = PQ.

� Surrogate class marginal probabilities are set as follows: p̄1 = β and p̄−1 = 1−β.

The latter associations convert the semi-supervised problem into a surrogate super-
vised problem. Thus, this formulation is directly applicable to classification problems,
the input data of which consists of labeled samples from one class (Q) and unlabeled
samples from a mixture (X). This type of problem is denoted as learning from positive
labels and unlabeled data (LPU). It can also be referred to as one-sided problem.

Let us recall that Steinwart et al. (2005a) demonstrated that it is possible to validate
the performance of f̂ by means of the risk function, without estimating S(f̂). Based
on the results obtained in the previous section, we can obtain for the relative content
density case: the risk function, the empirical risk function and the formulation of the
criterion to be minimized by SVM. For the sake of completeness, we formulate the
respective expressions in terms of β:

R(f) :=
2β

1 + 2β
PQ̄(f ≤ 0) +

1
1 + 2β

PX̄(f > 0), (2.12)

R̂(f) =
2β

1 + 2β
1
|Q̄|

∑
x∈Q̄

I(f(x) ≤ 0) +
1

1 + 2β
1
|X̄|

∑
x∈X̄

I(f(x) > 0), (2.13)

λ ‖ f ‖2H +
2β

(1 + 2β)
1
|Q̄|

∑
x∈Q̄

l(1, f(x)) +
1

1 + 2β
1
|X̄|

∑
x∈X̄

(l(−1, f(x))) . (2.14)

Finally, let us remark an important condition that should hold and that is not
evident from the LPU formulation. The formulated equations are valid in the infinite
sample limit (|X| =∞). When the latter does not hold, finite sample effects represented
in classifications errors are introduced. An infinite sample set cannot be obtained.
However, it is desired that |X| � |Q|.
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2.3.4 Solution 3: LPU with Progressive Increase of the Training Set

Class imbalance is a common problem in anomaly detection. The problem occurs when
most of the data comes from one class. In LPU, this implies having a true t value close
to 0 or 1. With imbalanced classes, most learning methods tend to favor a response
that assigns all patterns to one class. The latter tends to worsen under limited data
conditions.

In DLD-SVM, limited data is not a serious issue since artificial data can be gener-
ated. This is not the case for LPU. Let us again remark that the formulations presented
in Section 2.3.3 hold in the infinite sample limit. Since this cannot be accomplished in
practice, at least it is desired to have |X| � |Q|.

Under these conditions, we propose an approach to improve the performance of
LPU by progressively increasing the two sets that make up the training data set. With
the addition of samples to Q our goal is to ameliorate the description of normality,
whereas samples are added to X in order to keep the relation |X| � |Q| and reduce
the finite sample effect. With this, we consider that the trained model M should not
be static but should be re-trained every time new data arrives. Our proposal, that is
inspired in clinical data flow, is depicted in Figure 2.2. The algorithm workflow is as
follows:

1. An initial pair of sets Qi and Xi is used to train a model Mi (Figure 2.2 (a)).

2. The obtained model Mi is used to label the data from Xi (Figure 2.2 (b)). The
clinician validates the samples marked as lesions.

3. A random number of normal samples (samples that the clinician did not consider
as lesions) are selected from the labeled set Xi and combined with the set Qi to
build up the enhanced set Qi+1 (Figure 2.2 (c)).

4. At the arrival of newly acquired data, this is combined with the set Xi to make
up the enhanced set Xi+1 (Figure 2.2 (d)). It should be remarked that for the
purposes of training, it is assumed that no labels are available for Xi, although
it has already been labeled.

5. A new refined model Mi+1 is obtained by using the enhanced sets Qi+1 and Xi+1

for training (Figure 2.2 (e)).

As we already mentioned, the method is quite suitable for a clinical enviroment
while reducing the finite sample problem and enhancing the Q set.

2.3.5 Bias Variation as an Alternative to Improve Performance

The tuning of algorithms which involve strong class imbalance often requires a very
careful search of the associated parameters (such as λ or σ). Apart from a careful
selection of the SVM parameters, it is possible to apply algorithm enhancements that
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: The enhanced LPU procedure - (a) A model Mi is obtained from training
with the training set {Qi, Xi} (b) The model Mi assigns labels to the set Xi. (c) A random
sample is taken from positively labeled samples of Xi and is combined with Qi to make
up the enhanced set Qi+1. (d) Newly acquired data is added to Xi to form the set Xi+1.
(e) A model Mi+1 is obtained from training with the training set {Qi+1, Xi+1}. (f) Color
map.
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help improve the final classification. Enhancement algorithms are not very commonly
used in the machine learning domain and are rare to find in literature.

A simple enhancement method consists in following the normal SVM training with
a subsequent step that adjusts the bias term in the decision function (parameter b in
Eq. A.4) to minimize the risk (or error). This strategy was first used by Fukunaga
(1972) to improve the performance of nearest neighbor classifiers. In his work, he
proves that this process of adjusting the offset can drastically reduce the error bias of
the designed classifier. More recently, Hush et al. (2007) proposed a theorem (Theorem
2.8, in the article) in which it is demonstrated that the procedure is theoretically correct
and its performance is no worse than using the b value for the standard SVM. To the
best of our knowledge, no other works found in literature make use of this enhancement
technique to improve classification.

2.4 Definition of Candidate Features for Feature Set Con-
struction

Two key issues need to be addressed to tackle the vascular lesions identification problem
within the anomaly detection framework. First, the problem needs to be formulated
so as to fit into the DLD problem or the one-sided problem framework. Second, data
features differentiating between normal behavior and outliers need to be defined.

If a vessel is modeled as a tube and evaluated as a whole, it is unlikely to fit the
problem into the anomaly detection framework. Indeed, diseased vessels cannot be
considered as outliers within the set of available radiological images, since these images
are mainly acquired in symptomatic patients. However, one characteristic of vascular
lesions is that they usually are concentrated in a short segment of a vessel, compared
to the vessel entire length. If the problem is tackled on a slice-by-slice basis, due to
the concentration of the disease, only a small percentage of the data is abnormal, and
it is possible to detect the outlier behavior of the lesion under the DLD philosophy. If
at least one slice is detected as anomalous, it is possible to say that the corresponding
vessel contains an abnormality (and label it as a diseased vessel). As a consequence,
a 2-D approach is selected with cross-sectional planes locally orthogonal to the vessel
centerline.

In the following sections, we will describe a number of features that can be used to
describe vascular cross-sectional patterns. First, we describe a metric we have devel-
oped, which exploits the axial symmetry of normal vessels in order to extract features
(section 2.4.1). Then, we present a set of metrics that we have selected as source of
candidate features for our anomaly detection problem (section 2.4.2). Some of them are
used in literature within the centerline extraction process, in order to seek the best local
orientation and location of the centerline. Hence their original formulations include a
tentative orientation d of the cross-sectional plane and a tentative location p of the
centerline point. At the anomaly detection stage, we assume that the vessel centerline
is already available. Therefore, we will omit the orientation, and p (if not omitted) will
denote an actual centerline point.

32



2.4 Definition of Candidate Features for Feature Set Construction

2.4.1 Concentric Rings

For feature extraction, we need to adequately describe a pattern that models normality
inside a 2-D cross section. In literature, normal cross-sections are usually expected to
be circular or, at least, nearly symmetric e.g.: (Krissian et al., 2000; Wörz and Rohr,
2007) assume circular cross-sections with a bar-like intensity profile in big and medium
vessels, and a Gaussian-like profile for small ones. Figures 2.3 and 2.4 show several
examples of intensity profiles in big, small and diseased vessels.

We propose a metric were the normality is not explicitly modeled by a specific
cross-sectional shape or intensity profile. Nevertheless, the metric M evaluating the
local intensity patterns, is designed in a way that it is able to capture the intensity
profiles and the axial symmetry of normal vessels. With such a metric, we expect a
normal pattern to occur in the majority of cross-sections making it suitable for both
DLD-SVM and LPU approaches.

In order to formulate our metric, we first need to define a feature F (r, θ):

F (r, θ) =
∫ θe

θs

∫ re

rs

I(ρ, ϑ)dρdϑ, (2.15)

where [rs, re] represents a radial range around the vessel lumen center, [θs, θe] is an
angular range, and I(ρ, ϑ) is the image intensity at the location defined by polar coor-
dinates (ρ, ϑ). Our metric M is then defined by a set of thus calculated features, using
predefined ranges of r and θ. The respective numbers of ranges are denoted by Nr

and Nθ, and their sizes are fixed as follows: ∆r = (rmax − rmin)/Nr and ∆θ = 2π/Nθ.
Visually, M can be seen as a set of concentric rings centered at the vessel centerline
and subdivided into sectors (Figure 2.5). However, for the sake of simplicity, we will
refer to it as Concentric Rings.

The typical behavior of the metric in a normal vessel is expected to have the fol-
lowing characteristics:

1. for a fixed θ value, F (r, θ) decreases as r increases,

2. for a fixed value of r, F (r, θ) is nearly constant, while θ varies in the range [0, 2π)
(rotational invariance).

Our goal, when introducing an integral term in the feature definition (Eq. 2.15), is
to reduce sensitivity to noise, compared to a simple sampling scheme at particular posi-
tions (following a circular pattern). The latter scheme might include noisy voxels that
can cause an erroneous classification. By integrating along a polar neighborhood we
overcome this problem. Nevertheless, if the pair (∆r,∆θ) defines a large region, the in-
tegral term can cause a strong homogenization, producing information loss. Therefore,
there is an inherent trade-off, when selecting the region size, between noise suppression
and the loss of information. Figure 2.5 illustrates the metric response in normal and
abnormal cross-sections of a real vessel using Nr = 9 and Nθ = 8.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 2.3: Intensity plots of orthogonal 2-D slices in a coronary artery - First
column presents normal cross-sections of the proximal left coronary artery (LCA) and
of the distal LCA, a cross-section with a calcification and a cross-section with a stenosis.
Second column shows 2D views of pseudo-color intensity plots, and the third column shows
a 3D view of the same intensity plots. Color map (m) encodes the intensities of the 2D
cross-section normalized between its minimum and maximum values.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.4: Intensity plots of orthogonal 2-D slices in a carotid artery - (a) normal
carotid artery, (c) 2D representation of the intensity profile and (e) 3D representation of the
intensity profile. In (b), calcified carotid artery and the 2D (d) and 3D (f) intensity plots.
Colors encode the intensities of the 2D cross-section normalized between its minimum and
maximum values. (g) Color map.
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(a) (b) (c) (d)

Figure 2.5: Concentric rings metric representation using the Bull’s Eye plot
- In a normal case (a), high values are obtained in the inner rings, while low values are
obtained in the outer rings. In an anomalous case (c), the pattern varies. Corresponding
healthy (b) and a calcified slice (d) are shown (the calcification is the bright spot, top right
with regard to the cross-hair indicating the center of the lumen). The colors encode the
normalized values of intensity integrals within each sector of each ring.

2.4.2 Other Candidate Features

Apart from our previously defined metric, we are willing to evaluate the performance
of other metrics. Since the detection of vascular anomalies through ML techniques
is rather new, it is not possible to establish a state-of-the-art set of features for this
purpose. Therefore, we make use of global features commonly used in vascular en-
hancement and/or segmentation to define an initial set of candidates.

Our criterion to select vascular enhancement/segmentation features comes from
the fact that these features are supposed to give good responses at lumen positions in
normal regions, while their responses are likely to deviate from the normality in the
presence of a lesion. As an example, it is well-known that Hessian eigenvalues have
poor responses (deviating from the normality) in the vicinity of calcifications. What
represents a disadvantage for lumen enhancement or segmentation, can be exploited in
our framework to allow anomaly detection.

An additional criterion in the selection of the alternative candidate features is mo-
tivated by the possibility of comparing their performance to our metric. Therefore, we
keep the slice-by-slice strategy and our features have to be restricted to 2D features.

The candidate features exploit various image properties and different mathemat-
ical mechanisms. Their presentation hereafter follows the order from derivative- to
integral-based. We thus begin with a metric based on second order derivatives, namely
Hessian eigenvalues, which seeks normality by evaluating the symmetry of the cross-
sectional shape through the eigenvalues of the Hessian matrix. Then we describe mea-
sures that exploit the medialness of normal vessels by evaluating first order derivatives
at radial positions. These are: Cores, Flux and MFlux measures. We follow with
the Ribbon metric that combines integration and differentiation in order to evaluate
overall contrast between lumen and background. The Ball measure can be consid-
ered as integral-based, as it calculates intersection area to evaluate how well the shape
of the lumen fits a disc. Another example of integral features are Inertia moments
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that evaluate the symmetry of the cross-sectional shape by the use of inertia matrix
eigenvalues.

Additionally, we have pre-selected a group of local features that have been used in
object segmentation through ML techniques and that have recently been applied to de-
tect vascular lesions (Tessmann et al., 2008). These are the so-called Steerable features
that combine measurements of derivative nature of all orders (from zero to second or-
der).

In the following we provide further details on the selected candidate features.

Hessian eigenvalues

The analysis of second order information of an image provides knowledge about the
geometry of vessels. This can be done by evaluating the eigenvalues of the Hessian
matrix. For the 2D case, it is defined as:

H(I(x, y)) =


∂2I

∂x2

∂2I

∂x∂y
∂2I

∂y∂x

∂2I

∂y2

 (2.16)

where the differentiation operation over image I(x, y) = I(x) is defined, according to
linear scale space theory (Lindeberg, 1996), as a convolution with Gaussian derivatives:

∂

∂x
I(x, σ) = σγI(x) ∗ ∂

∂x
G(x, σ), (2.17)

with G(x, σ) being a Gaussian function with standard deviation σ, and γ being a
parameter introduced by Lindeberg (1996) to define a family of normalized derivatives.

The relationship between the eigenvalues of the Hessian matrix has been exploited
by several authors (Bennink et al., 2007; Frangi et al., 1998; Li et al., 2003; Lorenz
et al., 1997; Sato et al., 1998) in vessel extraction. In the context of anomaly detection,
we calculate the Hessian and its eigenvalues at the vessel centerline point p, within
the orthogonal cross-section. As normal cross-sections are nearly symmetric, the two
eigenvalues are expected to have similar magnitudes and the same sign. Actually, with
the vessel lumen brighter than the surrounding tissues, we should have λ2 ≈ λ1 � 0.

Cores

Core methods extract the medial axes of objects by following a ridge criterion. This
criterion can be based on intensity ridge, e.g. (Aylward and Bullit, 2002), or on a me-
dialness measure. For the purpose of our anomaly detection problem, we will evaluate
the medialness measure used in the core method proposed by Fridman (2004). This
measure is obtained by the use of so-called medial atoms. A medial atom is a discrete
circular pattern with N equi-angular rays, denoted spokes. Medialness is measured by
probing the image by the use of a directional derivative of a Gaussian placed at the
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tip of each spoke, where the derivative is taken in the direction of the spoke (Fridman
et al., 2003). Mathematically, this is expressed as:

C(p, σr) =
N∑
i=1

Di,σr(xi), (2.18)

where xi is the tip location of the i-th spoke, Di,σr(x) is the value, at location x, of the
directional image derivative along the i-th spoke, i.e. along the vector xi − p, and σr
is the scale of interrogation. The authors recommend σr = ‖xi − p‖ /4, where p is the
center of the medial atom, in our case a centerline point.

Figure 2.6: The Cores measure - Core evaluation pattern (medial atom) using Gaussian
first order derivatives at the tips of the spokes (rays). Illustration obtained from (Lesage,
2009)

Thus defined Cores feature is closely related with Flux (Lesage et al., 2009a) but
differs in the way the derivatives are calculated and in the scales selection.

Flux and MFlux

Flux is a gradient-based measure that exploits the orientation of gradient vectors by
computing the gradient flux through the surface of an object. The flux F (S) through
a surface S is defined as:

F (S) =
∫
S
〈∇I,n〉 ds (2.19)

where ds is an infinitesimal surface patch, and 〈∇I,n〉 denotes the scalar product of
the image intensity gradient vector ∇I with the inward surface normal n.

We apply a discrete version of the Flux metric, based on the implementation by
Lesage et al. (2009a). In their proposal, after an equi-angular discretization of the
cross-sectional circular contour into N points xi, Flux is defined as:

Flux(p, r) =
1
N

N∑
i=1

〈∇I(xi),ni〉 (2.20)
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where p is the center of the circle, r is its radius (i.e. r = ‖p− xi‖), ∇I(xi) is the
gradient vector at point xi, and ni = p−xi

r is the inward radial direction.
Based on Flux, Lesage et al. (2009a) developed a new measurement denoted Min-

imal Flux or simply MFlux that aims at overcoming the sensitivity of Flux to isolated
step edges. With N an even number of cross-sectional points, the MFlux analyzes
N/2 pairs of diametrically opposed points (xi,xπi ), i.e. xπi = xN

2
+i, and it retains the

minimal flux contribution per pair:

MFlux(p, r) =
2
N

N
2∑
i=1

min(〈∇I(xi),ni〉 , 〈∇I(xπi ),nπi 〉). (2.21)

While Lesage et al. (2009a) use Flux and MFlux in order to find coronary arteries
centerlines, we assume that vessel centerlines have already been extracted, p is thus a
centerline point.

Flux and MFlux make use of a pre-regularized gradient vector field. As proposed
by Lesage et al. (2009a) we use an isotropic Gaussian smoothing to perform the reg-
ularization, with a standard deviation σs of the same order as the image resolution
to preserve the smallest vessels. Another key element of this implementation regards
an image pre-processing applied to the original data, which performs the following
intensity transformation:

Ĩ(x) =


Tlow if I(x) < Tlow
Thigh if I(x) > Thigh
I(x) otherwise

(2.22)

where I(x) is the original CT number of a voxel x, Ĩ(x) is the transformed intensity
value and Tlow and Thigh represent lower and upper thresholds that restrict the intensity
dynamics within the range [Tlow, Thigh]. Definition of the threshold values will be
discussed in Chapter 4.

Ribbon metric

Ribbon is a region-based metric developed by Florin et al. (2005, 2006), which evalu-
ates the difference between the mean intensity in an inner region Aint corresponding
to the lumen, and the mean intensity in an outer band Bext surrounding the lumen
(Figure 2.7), both having the same area. In angiography images, where the lumen is
brighter than the surrounding tissues, this difference is expected to be positive. The
metric, denoted R, is therefore defined as:

R =

 −∞ , µint 6 µext
µint − µext
µint + µext

, otherwise (2.23)

with
µint =

1
Nint

∑
x∈Aint

I(x), µext =
1

Next

∑
x∈Bext

I(x)
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being the respective mean intensities of the inner and outer region, the respective pixel-
sizes of which are Nin = |x ∈ Aint| and Next = |x ∈ Bext|. Equality of areas implies
Nin = Next.

The initial ribbon measure defined by Florin et al. (2005) considered ellipsoidal
cross-sections, thus making the inner region an ellipse. Since we expect normal cross-
sections to be circular or nearly circular, in our implementation the inner region is
a disc with a radius rint, and the outer region is a ring delimited by a radius rext.
The equality of areas implies that the radius of the external region has to be set as
rext =

√
2rint. This approach has already been followed by Lesage (2009).

Figure 2.7: The ribbon metric - The metric evaluates the mean intensity difference
between a circle Aint of radius rint and a surrounding ring Bext of radius rext.

Ball measure

The Ball measure (Nain et al., 2004) characterizes the shape of a region A by comparing
it with a local ball-shaped neighborhood B(x, r) (disk in R2, solid sphere in R3). At
every point x inside A, a measure ε calculates the percentage of points that fall into
the intersection between A and the neighborhood B(x, r) centered at x and of radius
r. The metric is defined as:

ε(x) =
∫
B(x,r)

χ(y)dy, (2.24)

where

χ(y) =
{

1 if y ∈ A
0 if y /∈ A.

For the purpose of our problem, the Ball feature is only calculated at the location
p corresponding to a centerline point. As for the function χ(y), it requires a definition
of an inclusion criterion that identifies the pixels belonging to the region A. To be
consistent with other metrics, we have used the thresholds defined in Eq. 2.22 as a
criterion. Pixels falling into the range (Tlow, Thigh) are considered as belonging to A
while the rest are not.
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Inertia moments

Boldak et al. (2003) and Hernández Hoyos et al. (2006) exploit the analogy between
image moments and those from statistics and mechanics, to obtain shape information
from local structures. More particularly, they make use of second order moments, also
noted inertia moments, of image intensities to extract information about the vessel
geometry. Their approach is formulated in a three-dimensional space. In the following,
we describe the 2D equivalent formulation that we have applied.

2D geometric moments, mpq of order n = p+ q, of a continuous function f(x, y) are
defined as:

mpq =
∫∫

ζ
xpyqf(x, y)dxdy where p, q = 0, 1, 2, 3... (2.25)

Here ζ represents the image region where the function f(x, y) is defined. Adapting
this definition, to grayscale images with pixel intensities I(x, y), we have that f(x, y) =
I(x, y). Moreover, 2D central moments, µpq of order n = p+ q are expressed as:

µpq =
∫∫

ζ
(x− x̄)p(y − ȳ)qf(x, y)dxdy, (2.26)

where x̄, ȳ represent the coordinates of the gravity center of ζ:

x̄ =
m10

m00
, ȳ =

m01

m00
. (2.27)

For the purpose of our problem ζ is a disc of radius r centered in a vessel centerline
point p. Furthermore, as the gravity center of a normal cross-section is expected to
coincide with the centerline point ((Boldak et al., 2003; Hernández Hoyos et al., 2006)),
we take (x̄, ȳ) = p.

Using the inertia moments, it is possible to construct the inertia or covariance
matrix that allows obtaining orientation information from the image:

I =
[
µ′20 µ′11

µ′11 µ′02

]
, (2.28)

where
µ′20 =

µ20

µ00
, µ′02 =

µ02

µ00
, µ′11 =

µ11

µ00
.

The eigenvectors of the inertia matrix correspond to the major and minor axes of
the equivalent ellipse approximating the image intensity pattern. The corresponding
eigenvalues are calculated as:

λi =
µ′20 + µ′02

2
±
√

4µ′211 + (µ′20 − µ′02)2

2
, (2.29)

and are proportional to the length of the eigenvector axes. The ratio between the major
and minor axes gives an indication of the eccentricity of an object. This is, how much
the object approximate shape differs from a circle.
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Steerable features

Steerable features were proposed by Zheng et al. (2007, 2008) to capture the orientation
and scale of an object to be segmented, which in their case were the heart chambers.
Steerable features sample points from the evaluated volume according to a sampling
pattern (Figure 2.8). Afterwards, local features are extracted at each sample point,
such as: image intensity, its derivatives, etc.

Figure 2.8: Sampling pattern examples - 2D sampling patterns of steerable features.
Left, a regular sampling pattern. Right, sampling pattern around an expected shape
boundary. Illustration from (Zheng et al., 2007)

In (Zheng et al., 2007), 24 different features are proposed for 3D datasets. Since our
features are extracted on a 2D-basis, we eliminate the derivatives along the z direction,
which reduces the number of features to 20. Given a point (x,y) with intensity I, the
extracted features are denoted: I,

√
I, I2, I3, log I, Ix, Iy, |∇I|,

√
|∇I|, ..., Ixx, Iyy,

Ixy, |H|F ,
√
|H|F ...etc. Here, |H|F denotes the Frobenius norm of the Hessian. To

exploit the symmetrical characteristics of a normal vessel a circular pattern is used.

2.5 Feature Selection: Methodology

An individual set of features, i.e. variables extracted from a particular metric, can be
used to train a classifier, while obtaining adequate results. Chapter 4 devotes a section
to present the individual performance of features extracted from the metrics defined
in section 2.4. The performance of individual feature sets rises the idea of combining
some of them to compose a larger set that would outperform the classifiers trained with
a single feature set.

Our goal is to construct an optimal feature set by combining the metrics defined
in section 2.4. In practice, however, this is not a simple task and several issues arise
when constructing a feature set. For instance, larger feature sets do not imply higher
accuracy of the classifier. Moreover, large feature sets are computationally expensive.A
high number of features can induce the so-called curse of dimensionality Bellman (1961)
problem during the SVM training, which is related to the exponential growth of the
data volume when adding new dimensions (here features). Thus, combining all possible
features is not an adequate solution and a subset of features needs to be selected
following a predefined criterion. The latter is not obvious. In fact, the best individual
features do not necessarily lead to a good classification or, conversely, poorly performing
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individual features do not always lead to a bad classification, when combined with
others. Apart from these, an incorrect selection of a subset of features can lead to
problems such as overfitting. Overfitting refers to the problem caused when a learning
algorithm tries to find the best adjustment for the training data. It can occur that
it memorizes peculiarities of the training data instead of finding a general predictive
rule (Dietterich, 1995).

Feature selection refers to the task of constructing and selecting subsets of features
that are useful to construct a good classifier and has been extensively studied (Guyon
and Elisseeff, 2003; Liu et al., 2010; Zhao et al., 2010). It differs from the problem of
finding all potentially relevant features, which is a suboptimal task.

Different criteria can be used to categorize feature selection algorithms. A widely
used categorization proposes to divide the methods into wrappers, filters and embedded.
Wrappers (Kohavi and John, 1997) use the learning machine of interest as a blackbox
to score subsets of variables according to their predictive power. Filters select subsets
of variables as a pre-processing step, independently of the chosen learning machine.
Embedded methods perform variable selection within the training process, and feature
relevance is obtained analytically from the objective of the learning model. Usually
these methods are specific to a given learning machine.

Depending on the type of output that the algorithms provide they can be divided
into two main categories: feature ranking and subset selection. Variable ranking meth-
ods compute a score function S from the input data and sort the features in a decreas-
ing order (assuming a high score indicates a valuable variable) according to S. Then
a threshold criterion is used to keep the best ranked features. As an advantage, these
approaches are simple, scalable and with good empirical success. However, since they
rank features independently, they lack the evaluation of variables interdependence.

On the other hand, subset selection methods search for an optimal subset from
among all possible features. Wrapper methods usually fall into this category, while
filter and embedded methods can either return a subset or a list of ranked features.

One of the main constraints of subset selection comes from the fact that the selection
of a subset of variables is a NP-complete problem (Amaldi and Kann, 1998). Therefore,
a trade-off is to be found. Typically, greedy search strategies are adopted, which seems
to be computationally feasible and robust against overfitting. These are: forward
selection and backward elimination. Forward selection progressively adds variables to
the subset while backward elimination starts from the complete set of feature candidates
and progressively eliminates the least valuable ones. In both cases, it is necessary to
establish a stopping condition (when to stop adding/removing variables). Additionally,
forward selection needs to select an initial feature from which to grow the selected
subset.

Finally, feature selection algorithms, as classification methods, can be categorized
into supervised, semi-supervised and unsupervised, according to the necessity of labeled
data. However, most of the efforts have been directed towards feature selection in super-
vised environments. For instance, the Feature Selection Algorithm Repository (Zhao
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et al., 2010) 1 only contains two feature ranking methods that can be used in unsuper-
vised environments. Extensive reviews on feature selection (Guyon and Elisseeff, 2003;
Liu and Yu, 2005) focus only on supervised approaches.

On the other hand, most of the existing unsupervised feature selection techniques
rely on clustering (Ben-Hur and Guyon, 2003; Brunner et al., 2008; Søndberg-Madsen
et al., 2003; Xing and Karp, 2001). Most clustering algorithms generate a cluster even if
the data has no inherent cluster structure, so external validation tools are required (Ben-
Hur and Guyon, 2003). Although this type of situation is not strictly considered as
supervised learning, it does require manual interaction of an expert.

In this section, we propose a novel unsupervised feature selection scheme by making
use of the classification algorithms, DLD-SVM and LPU. We propose to exploit the
information provided by the the empirical risk R in these two methods to select features.
This proposition falls into the category of wrapper methods. It is further discussed in
section 2.5.1. In order to assess the performance of our proposal, we also make use of
supervised feature selection schemes and compare the results obtained with each of the
approaches. The latter are described in section 2.5.2.

We also add a brief description of an entropy-based unsupervised feature ranking
approach (Section 2.5.3). In our work we only use it as a feature parameter tuning
instrument (see Sections 3.2.1 and 3.3.1). Entropy is not used for feature selection,
as it does not provide an initial estimate of ρ (or t respectively) that we need in our
unsupervised (semi-supervised) selection scheme.

2.5.1 DLD-SVM and LPU for Feature Selection

An optimal feature set condition often means the minimal classification error (Peng
et al., 2005). In section 2.3.1, we stated that minimizing the empirical error R also
minimizes the classification error (refer to (Steinwart et al., 2005a,b) for further details).
Therefore, the empirical risk functions defined in Eqs. 2.5 and 2.12 represent a natural
way to perform feature selection in an unsupervised environment.

Intuitively, our proposal seeks to evaluate different subsets of features until a crite-
rion is reached. In our case, the stopping condition is the obtention of a minimum in
R. The subset of features reaching this minimum is held. Again, since it is impossible
to search across all possible subsets, a search strategy has to be selected. In literature,
there is no evidence that a particular search strategy (forward selection or backward
elimination) performs better than the others. Selection criteria are empirical. In our
case, we have chosen the forward selection for two main reasons. First, the curse of
dimensionality might produce undesired results using backward elimination when the
size of the available datasets is significantly smaller than the number of variables to
evaluate. Second, backward elimination is computationally very expensive.

The selection of a forward strategy imposes an additional challenge: it is necessary
to determine which order should be followed for the progressive inclusion of variables.
A variable ranking strategy is a reasonable approach to define the inclusion order. Best

1http://featureselection.asu.edu/
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ranked features are first included whereas variables with a low rank are left for last.
Since we want to keep the unsupervised/semi-supervised nature of our approach,

the use of labels should be avoided. Some common criteria used to rank features
in an unsupervised environment include saliency, entropy, smoothness, density and
reliability (Guyon and Elisseeff, 2003). More complex ranking strategies include the
Laplacian score developed by He et al. (2005) and further extensions (Zhao and Liu,
2007). Here, we propose to also use the empirical risk R to define the inclusion order.
In our approach, we first train our classifier with each set of features (features extracted
from the same metric) individually. For each set, we keep the empirical risk obtained
and use it to sort the features in ascending order. The feature selection algorithm then
starts with the feature that performed best by itself (lowest empirical risk) and then it
adds features according to the ranking.

Let ml denote the number of features that compose the l-th evaluated metric, with
its associated individual risk Rl, such that l = 1 corresponds to the metric with the
smallest risk R1 and l = L corresponds to the metric with the largest risk RL, L being
the total number of metrics. The subscripts denote the individual metrics and their
associated risks. Let X be a matrix representing the entire available training set, which
has M columns and N lines. Each line corresponds to one sample, while each column
corresponds to one feature, i.e. each element of the matrix X is the value of the m-th
feature in the n-th sample. The features are grouped by metrics in such a way that the
first m1 columns belong to the metric corresponding to l = 1 and so on. R1 and X are
the inputs of the algorithm, as well as a vector F containing the ordered values of ml,
i.e. F[l] = ml.

At each iteration t, the algorithm (Algorithm 2.5.1) evaluates the risk rcurrent = Rt

associated with a tentative feature set represented by a matrix Xt
train. This evaluation

is represented by the function train(·). The superscript t = l− 1 denotes the tentative
feature set composed of l first metrics, and the risk associated to this set. At the first
iteration (t = 1), the algorithm constructs X1

train by taking the features belonging to the
metrics l = 1 and l = 2, i.e. the m1 +m2 first columns from X. Then it incrementally
adds subsequent metrics, i.e. mt+1 consecutive columns from X, so the number of
features included in Xt

train is M t = |Xt
train| =

∑t+1
i=1 mi . The algorithm stops when the

condition rprev = Rt−1 ≤ Rt is accomplished, i.e. when the risk associated with Xt
train

stops decreasing. The output of the algorithm is the number of features that should be
kept.

It should be remarked that the formulation of the Algorithm 2.5.1 does not include
the initial feature ranking using the empirical risk, as an input of the algorithm. With
this, we want to make it clear that, even though we have chosen the empirical risk, any
other feature ranking approach can be used for this initial step, as long as it provides
an initial ordering.

Another important characteristic of this proposal relies in the use of the empirical
risk as a criterion to determine the optimal subset. The risk function R(f) is not
strictly attached to DLD-SVM and LPU formulations. Hush et al. (2005) state that R

is a legitimate performance measure for anomaly detection. This means that anomaly
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detection problems interpretable as binary classification problem can be formulated
in such a way that the empirical risk can be computed (for examples, see (Steinwart
et al., 2005a)). Therefore, Algorithm 2.5.1 is not limited to the DLD-SVM and LPU
formulation. In fact, any classification scheme that can be formulated by means of the
empirical risk can be plugged in into the function train(·) of Algorithm 2.5.1.

Algorithm 2.5.1: UnsupervisedSelection(X,R1,F)

rprev ←∞
rcurrent ← R1

t← 1
M t ← F[1]
while rcurrent < rprev

do


rprev ← rcurrent
M t ←M t + F[t]
Xtrain ← X

[
1 : N, 1 : M t

]
rcurrent ← train(Xtrain)
t← t+ 1

return (M t)

2.5.2 Supervised Feature Selection Strategies

Chen and Lin (2006) empirically showed that SVM-based methods can be successfully
combined with various feature selection strategies. This proposal participated in NIPS
2003 Feature Selection Challenge 1 finishing third in the final ranking. The supervised
feature selection strategy we present here is inspired by their work. Their seminal idea
consisted in combining different feature selection strategies to be used as filters for a
posterior classification using SVMs.

From the original proposal by Chen and Lin (2006), we have kept two of the strate-
gies: a variable ranking method denoted F-score (Chen and Lin, 2006; Yang et al.,
2008) and random forests (Breiman, 2001), which is a wrapper method. Additionally,
we evaluate another popular wrapper method named SVM-Recursive feature elimina-
tion (SVM-RFE) described by Guyon et al. (2002). In the following we provide further
details on each of these strategies.

F-score

F-score (Chen and Lin, 2006; Yang et al., 2008) is a technique that measures the
discrimination of two sets of real numbers. Given M training vectors ~xm,m = 1, ...,M ,
if the respective mean values and variances of the positively and negatively labeled sets
for the i -th feature are x̄i+, x̄

i
−, (σ

i
+)2 and (σi−)2, then the F-score of the ith feature is

1http://clopinet.com/isabelle/Projects/NIPS2003/
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defined as:

F (i) ≡
(
x̄i+ − x̄i

)2 +
(
x̄i− − x̄i

)2
(σi+)2 + (σi−)2

(2.30)

where x̄i is the mean value of the whole set (union of positive and negative) for the i-th
feature. The larger the F-score, the more likely the feature to be discriminative.

A disadvantage of the F-score is that although the score gives an idea of how
discriminative a feature can be, since it evaluates features individually, it does not
provide any information about mutual information among features.

Using the F-score, our procedure that performs feature selection is as follows:

1. Calculate the F-score of every single feature from each metric.

2. Rank the different metrics based on F-scores obtained from all features composing
each individual metric.

3. Build feature sets by combining the first 2, 3, . . . , 6 ranked metrics, and evalu-
ate each one of these combinations. To this purpose, for every feature set thus
constructed:

(a) Randomly split the available data into training and validation set.

(b) Train an SVM using the training set and validate its performance with the
validation set.

(c) Repeat the training-validation process a fixed number K of times and aver-
age the obtained error.

4. Select the number of metrics generating the lowest error.

5. Evaluate the selected feature set on a different data set.

The SVM training that is done at step 3b) is not restricted to a particular method-
ology. In their seminal work, Chen and Lin (2006) use a standard soft margin SVM
but, as an example, DLD-SVM or LPU could be used.

The process of randomly splitting the available data into training and validation is
commonly referred as cross-validation (CV). The goal of performing several rounds of
CV is to reduce the variability by averaging the validation results over these rounds.
This version is known as N -cross-validation. Definition of the number of rounds (K),
as well as of the partition strategy, is left for Chapter 4.

Random Forests

Random forests (Breiman, 2001) is a classification method that provides feature impor-
tance. A random forest (RF) is a classifier consisting of a collection of tree-structured
classifiers (decision trees), each of which is constructed by instances with randomly
sampled features.
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Given X the training set of size N with M variables, each of the trees gives a
classification, denoted a vote, for this input set. The forest selects the classification
that has received the majority of votes.

Instead of using all the original N samples as training set, each tree grows using
N cases randomly drawn from X with replacement (i.e. once drawn, a sample returns
to the bag and is likely to be drawn again). With this procedure , about one-third of
the cases are left out of the sample. The latter are often called out-of-bag data. Then,
at each stage (node) of the growth of a tree mtry variables, out of M , are randomly
drawn (mtry � M) and used to calculate possible splits. The best split based on the
mtry variables is kept. Each tree is grown to the largest possible extent, i.e. as long as
the mtry variables permit to split the data. The algorithm requires the specification of
the parameter mtry, as well as the number of trees in the forest ntree.

Breiman (2002) proposes four different measures of variable importance. We have
chosen to use permutation importance. Variable importance is estimated by evaluating
how much the prediction error increases when out-of-bag data of a variable is permuted
while others are left unchanged. The required computations are performed on a tree
by tree basis, as the random forest is constructed.

Using random forests as a filter that allows feature ranking, the selection proce-
dure (Svetnik et al., 2004) is as follows:

1. Partition the data to perform N-cross-validation.

2. On thus obtained CV training set, train a model on all variables and use the
variable importance measure to rank the metrics.

3. Predict using RF and the CV validation set. Record the error.

4. Use the ranking to remove the least important half of the metrics. Retrain the
remainder and predict again, recording the error. Repeat the procedure until
only one set of features is left.

5. Repeat from the beginning a number K of times with different CV partitions.

6. Average the results from the K partitions to obtain the error rate.

7. Choose the subset with the lowest error.

8. Evaluate the best features on a different data set.

It should be noted that feature ranking procedure is not recursive. Variable im-
portance is obtained once at step 2 and not anymore for a particular CV iteration.
According to Svetnik et al. (2004) a recursive procedure is much greedier and has a
worse performance.

As with F-score, the selection of the parameter K of the cross-validation, and the
partition strategy are further discussed in Chapter 4.
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SVM-RFE

The SVM-RFE algorithm (Guyon et al., 2002) returns the ranking of the features of
a classification problem by training a SVM (Schölkopf and Smola, 2001) with a linear
kernel. Given the subset of surviving features, the algorithm iterates by removing the
feature with smallest ranking criterion at each step until no more features are left over.
The ranking criterion consists of a weight vector w that is constructed from the linear
combination of the training patterns, according to Eq. A.9 (see Appendix A for details
of the SVM classification formulation). The features ranked list provided as output is
used as the criterion for variable selection. We refer the reader to (Guyon et al., 2002)
for a more detailed explanation of the algorithm.

The procedure to obtain a subset of relevant features using SVM-RFE is the same
as the one used for RF and will therefore not be described again. The only difference
relies on the classifier. Instead of using and RF classifier, SVM-RFE is used. Once
again, the selection of parameter K of the cross-validation, and the partition strategy
are discussed in Chapter 4.

2.5.3 Entropy

Entropy is a commonly used metric for variable ranking in unsupervised environ-
ments (Guyon and Elisseeff, 2003). Features with a low entropy have a high level
of information for prediction.

The Shannon entropy H of a discrete random variable x with n possible different
values is:

H(x) = E(I(x)), (2.31)

where E is the expected value, and I is the information content of x. Since I(x) is a
random variable, if p denotes the probability mass function of x, then the entropy can
be written as:

H(X) =
n∑
i=1

p(xi)I(xi) = −
n∑
i=1

p(xi) log p(xi). (2.32)

In the case of p(xi) = 0 for some i, the value of the corresponding summand is taken
to be zero.

The original entropy definition is valid only for discrete variables, whereas the re-
sponse of the proposed metrics is of continuous nature. Therefore, it is necessary to
make use of the differential entropy, an extension of the original formulation. Given x
a random continuous variable with probability density function fx(x), the differential
entropy h(x) is defined as

h(x) = −
∫
fx(x) ln fx(x)dx (2.33)
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2.6 Discussion

In this chapter we have presented our vascular lesion detection framework. Since our
proposal is based on ML techniques, three key elements were included: the definition
of a classifier, the selection of metrics and a feature selection scheme.

We have proposed the use of two different classifier schemes: DLD-SVM and LPU.
Both methods follow an anomaly detection approach. The reason for our choice is
motivated by the fact that vascular lesions are highly heterogeneous so it is difficult to
determine a class that can group them for binary or even multiple classification (in the
case that each type of lesion is represented by a single class). In fact, Chawla et al.
(2003) have shown that the high imbalance in class cardinalities of asymmetric classi-
fication causes conventional classification techniques to yield unsatisfactory accuracy.
This represents a significant advantage of our proposal w.r.t. state-of-the-art methods
aiming at the detection of vascular lesions. While the existent methods use standard
binary classification (differentiation of two classes) we are the first to use an anomaly
detection scheme. Furthermore, to the best of our knowledge, this is the first time that
DLD-SVM and LPU are used in this domain.

Following the seminal idea of modeling anomalies as inconsistent observations w.r.t.
the rest of the data, we have designed an intensity-based metric that aims to capture
the intensity profiles and the axial symmetry of normal vessels when evaluated on
orthogonal cross-sections. Additionally, we propose to include global features typically
used for vascular enhancement or segmentation. Our motivation comes from the fact
that these are expected to have an homogeneous behavior inside the lumen and to
deviate from it when there are surrounding lesions.

In order to define an optimal feature subset to train the selected classifiers, we have
proposed a feature selection strategy that uses the empirical risk R as selection and
stopping criterion. Since the empirical risk can be used as performance measure of
anomaly detection formulations, the proposed algorithm permits the use of any clas-
sification strategy (that can be formulated in terms of the aforementioned risk). This
makes the method quite generic up to the point that it can be used for unsupervised,
semi-supervised and supervised learning schemes. Nevertheless, we also propose a more
classical feature selection scheme that uses different subset selection methods as filters
in combination with the DLD-SVM and LPU. Although this scheme has the disadvan-
tage of requiring labels, it serves as an evaluation reference for the risk-based method.

Evaluation of the herein described approach is left for Chapter 4.
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3

Metric Parameter Tuning and
Experimental Setup

In Chapter 2, we introduced all the elements that build up our anomaly detection frame-
work. Now, an important step is to define an optimal feature subset that maximizes the
performance of our two algorithms DLD-SVM and LPU. Nonetheless, before achieving
feature selection, it is necessary to tune up the different candidate metrics, which is the
purpose of this chapter. In Section 3.2 we elaborate on the experimental design and
evaluation of the proposed Concentric rings metric. Since the performance of the
metric has never been assessed neither in the anomaly detection domain nor in vascular
enhancement/segmentation field, we evaluate its use in combination with DLD-SVM
and LPU to determine its power in anomaly detection. Once the Concentric rings
metric is tuned and validated, the remaining candidate feature sets are adjusted such
that they can be compared to the Concentric rings metric (Section 3.3).

The protocol followed in the different experiments is defined in Section 3.1. Here
we describe the available data, the implementation of the classification algorithms and
the performance measures used to evaluate the obtained results. Let us remark that
the experimental guidelines herein described are also followed in the experiments that
will be discussed in Chapter 4.

A final discussion of the obtained results is presented at the end of the chapter.

3.1 Evaluation Protocol

The present section is devoted to describe all the required elements for the evaluation of
the methodology that was presented in Chapter 2. First, we specify the characteristics
of the input data that was used in our experiments, followed by the configuration of the
different classifiers. More particularly, we define the construction of training and testing
sets, the tuning parameters of each classifier and the way they are tuned up. Finally,
we define the measures that were used to assess the performance of our algorithms.
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3.1.1 Experimental Data

Our proposal was evaluated using two different types of data: 3D synthetic images and
3D cardiac CT data sets.

Synthetic Phantoms

This set of data consisted of 42 different volumes containing a variety of cases typically
encountered in vascular analysis. The phantom generation procedure was as follows:

1. 42 synthetic tubes with a radius varying from R = 4 to R = 10 voxels were
created. Vessel cross-sections were either circular or elliptical. Additionally, the
cross-section intensity profile was bar-like or Gaussian-like (Figure 3.1(a)).

2. From these 42 volumes, 21 were randomly selected to include simulated lesions.
Three different types of anomalies were simulated: aneurysms, atherosclerotic
calcified plaques and atherosclerotic hypodense plaques (Figure 3.1(b)-(d)).

3. From the remaining data sets, 7 volumes were randomly selected to simulate
the presence of tangent structures. Like in Krissian et al. (2000), we say that a
structure is tangent to a vessel when their boundaries are near enough to disturb
the metric computation (Figure 3.1(e)).

4. 7 further volumes were randomly selected from the remaining data sets to include
vessel bifurcations. These were generated at an angle α ∈ [π/4, π/2] as suggested
by theoretical studies based on hemodynamics (Murray, 1926; Oka and Nakai,
1987) (Figure 3.1(g)).

5. The 7 remaining data sets were left as completely normal.

With the inclusion of adjacent structures in our phantoms, we want to recreate
situations that could cause a failure of our method. To make the phantoms more
realistic, they were created using the typical Hounsfield Unit values that are found in
CT images for blood, background and plaque components, as well as the the typical
image dimensions and voxel size. Gaussian noise was also added, resulting in a contrast-
to-noise-ratio value of 10.

Cardiac CT Data

Fifteen cardiac CT datasets coming from different patients were obtained from two
different sources: the Rotterdam Coronary Artery Algorithm Evaluation which contains
data from the Erasmus Medical Center (Rotterdam, The Netherlands) and Hôpital
Louis Pradel (Bron, France). Data coming from Erasmus Medical Center (which will
be denoted as Set 1) was used for unsupervised feature selection and overall performance
evaluation. Data from Hôpital Louis Pradel (the Set 2) was used exclusively for feature
selection. The acquisition protocols are next described.
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(a) (b) (c) (d) (e)

(f) (g)

Figure 3.1: Examples of phantoms - (a) normal elliptical cross-section, (b) calcified-
plaque (pointed with the arrows) and (c) a stenosis resulting from a soft-plaque. (d) A
cross-section with an aneurysm, (e) cross-section with adjacent structures (the vessel of
interest is located in the middle of the image), (f) sagittal view of a vessel with an adjacent
structure and (g) a sagittal view of a bifurcation.

Set 1. Rotterdam Coronary Artery Algorithm Evaluation Framework. The
Rotterdam Coronary Artery Algorithm Evaluation Framework (Schaap et al., 2009)
aims at evaluating and comparing different algorithms for coronary artery centerline
extraction from CT angiography (CTA) data. For this purpose, thirty-two datasets are
provided. The acquisition protocol is as follows:

The CTA data was acquired in the Erasmus MC, University Medical Center Rot-
terdam, The Netherlands. Thirty-two datasets were randomly selected from a series of
patients who underwent a cardiac CTA examination between June 2005 and June 2006.
Twenty datasets were acquired with a 64-slice CT scanner and twelve datasets with a
dual-source CT scanner (Sensation 64 and Somatom Definition, Siemens Medical So-
lutions, Forchheim, Germany). A tube voltage of 120 kV was used for both scanners.
All datasets were acquired with ECG-pulsing (Weustink et al., 2008). The maximum
current (625 mA for the dual-source scanner and 900 mA for the 64-slice scanner) was
used in the window from 25% to 70% of the R-R interval and outside this window the
tube current was reduced to 20% of the maximum current.
Both scanners operated with a detector width of 0.6 mm. The image data was acquired
with a table feed of 3.8 mm per rotation (64-slice datasets) or 3.8 mm to 10 mm, indi-
vidually adapted to the patient’s heart rate (dual-source datasets).
Diastolic reconstructions were used, with reconstruction intervals varying from 250 ms
to 400 ms before the R-peak. Three datasets were reconstructed using a sharp (B46f)
kernel, all others were reconstructed using a medium-to-smooth (B30f) kernel. The
mean voxel size of the datasets is 0.32×0.32×0.4 mm (Schaap et al., 2009).

From the thirty-two available datasets, we have selected eight cases which corre-
spond to the training set of the Rotterdam Coronary Artery Algorithm Evaluation
Framework.
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Set 2. Hôpital Louis Pradel (Bron, France). A total of 7 datasets were acquired
on a 64-row CT scanner (Brilliance 64 − Philips Healthcare, Cleveland, OH) with a
standard scan protocol using the following parameters: 120 kV, 300 mAs, collimation
52×1.5 mm, rotation time 0.35 seconds and scan time 10-14 seconds. Image reconstruc-
tions were made with an in-plane pixel size of 0.37 × 0.37 mm2, matrix size 512×512,
slice thickness 0.9 mm, increment 0.45 mm, with an intermediate reconstruction kernel
(B).

Data preparation

Data sets from every source were sorted into different categories. These categories
in synthetic data were: normal, aneurysm, soft-plaque, calcification, bifurcation and
adjacent structure. For real data, only three categories were defined: normal, calcifica-
tion and soft-plaque. Bifurcation, adjacent structure and aneurysm were omitted since
all vessels had both adjacent structures and bifurcations, while no dataset contained
aneurysms. This classification was performed to assure representation of every possible
case when configuring the sets required for testing and evaluation (see Section 3.1.2).
In set construction, vessels from each category were randomly assigned to a particular
set.

The centerlines of 4 different coronary arteries were available (Schaap et al., 2009)
for Set 1 (Cardiac CT). The centerlines from three different coronary arteries were
manually drawn in Set 2 (Cardiac CT). Similarly, the centerline of one carotid artery
(common carotid and internal carotid artery) per dataset was manually drawn in the
Carotid CT datasets. The use of reference manually traced centerlines at this stage
is justified by the need to evaluate the anomaly detection methods alone, so that
the results are not affected by the accuracy of the centerline-extraction algorithm.
Using these centerlines, orthogonal cross-sections were computed. Regarding synthetic
phantoms, a theoretic centerline was available that was used to obtain the orthogonal
cross-sections in every phantom.

Cross-sections from patients’ data were manually labeled as normal or pathological
(Table 3.1). The annotations were used for the purpose of training in LPU, supervised
feature selection and performance evaluation.

It should be remarked that data coming from Cardiac set 2 was labeled by only one
observer, while datasets from Cardiac Set 1 were labeled by two observers which allows
to measure the agreement in anomaly detection between our methods and each of the
observers, as well as the agreement between the two observers and the two methods.

Features extracted using the metrics defined in Section 2.4 were computed on every
vessel cross-section. In every case, the features were normalized into the range [0, 1].

3.1.2 Configuration of the Learning Algorithms

Five different learning algorithms are used along this work. The first two are the DLD-
SVM and LPU approaches that we have proposed to use in the identification vascular
lesions, as well as in the feature selection task. Additionally, we make use of Random
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Table 3.1: Available normal and abnormal samples. Discrimination is done per
each type of dataset since they are evaluated separately. Cardiac CT (Set 1) has been
labeled by two different observers which leads to slightly different numbers of healthy and
abnormal slices. Classification according by each observer is separated by a slash

Dataset Healthy slices Abnormal slices
Synthetic data 18500 1500
Cardiac CT (Set 1) 10447 / 9095 1010 / 1352
Cardiac CT (Set 2) 2035 195

Forests, SVM-RFE and soft margin SVM. In every case, a set of parameters need to
be tuned up.

In the present chapter, we only make use of DLD-SVM and LPU since feature
selection is discussed in the next chapter. Nevertheless, for the sake of coherence, we
have selected to include the configuration of all the classifiers in the same section so that
comparison can be easily achieved. In the following, we detail the necessary parameters
of each classifier, its search strategy, implementation details and the data required by
each algorithm.

DLD-SVM

The solution of the DLD-SVM formulation requires data division into three subsets:
the training set T = {T, T ′}, the validation set V = {V, V ′} and the testing set
W = {W,W ′}, where T, V,W contained samples drawn from the set Q, and T ′, V ′,W ′

contained artificial samples generated according to the distribution defined by µ. The
samples from Q were distributed so as to achieve independence and representation of
every possible case. To this purpose, cross-sections coming from the same vessel were
not included in two different sets. Given m the number of features from each sample in
the set Q, artificially generated samples were generated following a uniform distribution
on [0, 1]m. For simplicity, we will refer to the artificial samples as the µ-samples. Ta-
ble 3.2 summarizes the data distribution in function of the datasets previously defined
in Section 3.1.1.

The DLD-SVM problem was solved using the LIBSVM software (Chang and Lin,
2001). DLD-SVM requires the optimization of three parameters: the σ2 from the
Gaussian kernel function, the density ρ and the regularization parameter λ from Eq. 2.6.
These were optimized following the guidelines proposed in (Steinwart et al., 2005a,b).

The learning process was performed for a wide range of values of ρ (step 100 for
ρ ∈ [100, 2000] and a few additional values on each side of this interval: see Table 3.3).
For each ρ value, the following steps were performed:

1. For a given pair of parameters λ and σ2, the SVM was used to find a decision
function f , using the training set T.

2. The empirical risk R associated with f was calculated on the validation set V,
according to Eq. 2.7.
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Table 3.2: Data distribution for DLD-SVM. Sample sizes for training T = {T, T ′},
validation V = {V, V ′} and testing W = {W,W ′} sets using synthetic and patient data.
Q denotes the available unlabeled data, while µ denotes the artificially generated samples.
Data obtained from Set 2 in cardiac data is exclusively used for the purpose of feature
selection.

Training Validation Testing
Synthetic data
Q-samples |T | = 6000 |V | = 4000 |W | = 10000
µ-samples |T ′| = 12000 |V ′| = 100000 |W ′| = 200000

Cardiac data (Set 1)
Q-samples |T | = 3440 |V | = 2300 |W | = 5717
µ-samples |T ′| = 10000 |V ′| = 100000 |W ′| = 100000

Cardiac data (Set 2)
Q-samples |T | = 669 |V | = 446 |W | = 1115
µ-samples |T ′| = 8000 |V ′| = 10000 |W ′| = 50000

Table 3.3: DLD-SVM parameters. Variation of parameter values for learning (ρ) and
grid search: λ and σ2.

Parameter Values
ρ 0.05, 0.1, 1, 10, 50, 100, 200, 300, ..., 1800, 1900, 2000, 3000, 4000
λ 1.0, 0.5, 0.1, 0.05, 0.01, ..., 10−7

σ2 10−4, 10−3, 10−2, 10−1,..., 102

The steps 1 and 2 were repeated for various values of the parameters λ and σ2

by employing a grid search (Chang and Lin, 2001) (Table 3.3 summarizes the grid
values for λ and σ2). For each value of ρ considered, the pair (λ, σ2) with the smallest
empirical risk R on V was kept.

Finally, the learned decision function f , corresponding to λ, σ2 and ρ in a way
that the empirical risk was minimum, was applied on the testing set W to estimate the
overall method performance.

LPU

LPU does not require separate sets for training and testing. In fact, all the available
data can be used for training. The main difference w.r.t. DLD-SVM relies in the ne-
cessity of labeled data for normality. Therefore, two sets are defined. The first set Q
containing labeled normal data and the second set X containing unlabeled data. As
with DLD-SVM, samples were distributed so as to achieve independence and represen-
tation of every possible case. To this purpose, healthy cross-sections coming from the
same vessel were not included in two different sets. The cardinality of Q and X when
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Table 3.4: Data distribution for LPU. Sample sizes for Q and X sets of the LPU
algorithm using synthetic and patient data. The data obtained from Set 2 in cardiac data
is exclusively used for the purpose of feature selection.

Q-samples X-samples
Synthetic data 1000 19000
Cardiac data (Set 1) 886 10571
Cardiac data (Set 2) 426 1609

Table 3.5: LPU parameters. Variation of parameter values for learning (t) and grid
search: Kλ and Kσ2 .

Parameter Values
t 0.1, 0.2, ..., 0.8, 0.9, 0.91, 0.92, 0.93, ..., 0.98, 0.99
Kλ 0.00001, 0.00005, 0.0001, ..., 1, 5, 10, 50, ..., 100, 500, 1000
Kσ2 10−4, 5× 10−4, 10−3, 5× 10−3,..., 1

constructed with the different available data is presented in Table 3.4. It is important
to remark that the X samples are both used for training and testing.

The LIBSVM software (Chang and Lin, 2001) was also used to solve the LPU prob-
lem. Again, three parameters need to be optimized: the σ2 from the Gaussian kernel
function, the threshold t and the regularization parameter λ from Eq. 2.14.

The optimization process iterates over a range of values of t (see Table 3.5), per-
forming the following steps:

1. For a given pair of parameters λ and σ2, the SVM was used to find a decision
function f , using the training set {Q,X}.

2. The empirical risk R associated with f , was calculated according to Eq. 2.7.

A grid search similar as the one performed for DLD-SVM, is used in LPU to optimize
λ and σ2. Steps 1 and 2 are repeated for a set of values of λ and σ2. Let n be the total
samples available for training and m the number of features in each sample, λ values
are defined by:

λ =
Kλ√
n
, (3.1)

where Kλ is a numerical constant that is varied to generate the search grid. The σ2

parameter is computed as

σ2 =
Kσ2

√
n

m
, (3.2)

where again Kσ2 is a numerical constant that varies to generate the search grid. Ta-
ble 3.5 summarizes the constant K values used in the grid search.

The learned decision function f , corresponding to λ, σ2 and t minimizing the em-
pirical risk, is applied on the set X to evaluate the performance of the method.
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Table 3.6: Data distribution for F-score, RF and SVM-RFE. Sample size for
patient data using the F-score, RF and SVM-RFE feature selection algorithms. These
methods are exclusively used in the task of feature selection. In the three methods, healthy
samples receive a positive label (+1), while lesions receive a negative label (−1).

Healthy slices Abnormal slices
(positive samples) (negative samples)

Cardiac data (Set 2) 1840 195

F-score

Data used for feature selection comes exclusively from Set 2, which is entirely labeled.
Table 3.6 details the number of healthy and lesioned samples of this set.

Set 2 is made up of 7 different datasets. We have chosen to perform a seven-fold
cross-validation using this set. This means that we consider all the samples from one
dataset as a subset and, on every iteration, one of the datasets is used for validation,
while keeping the six remaining datasets for training. The operation is repeated seven
times to collect errors for each case. We could have chosen a different approach where
a randomly selected subset S′ from Set 2 is used for validation and the remaining data
S, where |S′| < |S|, is kept for training. This, however, generates interdependence (a
particular vessel can make part of both subsets) among sets which we want to avoid.

Since the three supervised feature selection methods we have selected use cross-
validation, the previously described data partition scheme was applied not only to
F-score, but also to RF and SVM-RFE strategies.

In section 2.5.2, we mentioned that the SVM training step involved in the F-score
procedure can be performed with any particular SVM algorithm. For instance, DLD-
SVM or LPU approaches can be used. However, we have chosen to use the standard
soft margin SVM (Cortes and Vapnik, 1995). Unlike the unsupervised feature selection
scheme, where DLD-SVM is used to select a feature subset for a subsequent use by
the DLD-SVM classifier, and LPU is used to select a possibly different feature subset
for a subsequent use by the LPU classifier, here we propose to select a single feature
subset independent of the targeted classifier (i.e. DLD-SVM, LPU or another). For
this purpose, the most generic version of SVM, the soft margin SVM, is an appropriate
choice.

The LIBSVM software (Chang and Lin, 2001) was used to solve the soft margin SVM.
In this case, two parameters need to be tuned up. The parameter C (see Eq. A.13 in
Appendix A) and σ2 of the Gaussian kernel. In a similar fashion as with DLD-SVM
and LPU, a grid search is performed over these two parameters (see Table 3.7). How-
ever, experimentally we could determine that variation of C did not induce significant
changes. Therefore, C = 10 was fixed and the search was performed exclusively on σ2.
The set of values was explored and the one resulting in the minimum training error was
kept.
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Table 3.7: F-score, RF and SVM-RFE parameters. RF requires tuning of mtry

and ntrees. mtry tuning is a function of the number of features m. Both SVM-RFE and
soft margin SVM used in the F-score procedure require a grid search over the parameter C
(Eq. A.13). Additionally, the soft margin SVM requires a grid search over the σ2 parameter
of the Gaussian kernel.

Parameter Value
F-score
σ2 10−4, 10−3, 10−2, 10−1,..., 102

C 0.001, 0.005, 0.01, 0.05, ..., 100

SVM-RFE
C 0.001, 0.005, 0.01, 0.05, ..., 100

Random Forests
mtry

m
2 , m

4 ,
√
m, m

ntrees 10, 50, 100, 500, 1000, 2000, 5000, 10000

Random Forests

The randomForest package of the R software1 was used to implement Random Forests.
RF requires that two parameters are specified. These are the number of variables in the
random subset at each node mtry and the number of trees in the forest ntree. Table 3.7
shows the evaluated ranges for both mtry and ntree. Experimentations showed that
the variation in the number of trees did not affect the results so the value was fixed
to ntree = 1000. Regarding mtry, the classification error was slightly smaller when
using mtry =

√
m. The result is coherent with previous publications using RF for

variable reduction (Svetnik et al., 2004) and it is also coherent with the default value
suggested by the randomForest package. Therefore, mtry =

√
m was fixed for the

feature selection process.

SVM-RFE

An implementation based on the LIBSVM Chang and Lin (2001) interface for R software
was used to solve SVM-RFE. This interface is preferred w.r.t. the C++ LIBSVM version
used to solve DLD-SVM and LPU, since it contains specific methods associated to the
SVM-RFE solution.

SVM-RFE makes use of a linear kernel. Therefore, only the parameter C needs to
be tuned up (see Appendix A for the formulation). A coarse grid search was performed
through a set of values (Table 3.7) showing no significant variation in the results. C =10
was kept for the experimentations.

1http://www.r-project.org/
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3.1.3 Performance Assessment

The performance of a classification system is typically presented in terms of specificity,
sensitivity and accuracy. In order to formulate the expressions of these three mea-
surements, let us first define true positives (TP) as correctly detected anomalies; false
negatives (FN) as undetected anomalies; true negatives (TN) as correctly classified
negative patterns (e.g. normal cases) and false positives (FP) as erroneously classified
negative samples. In the following, we first provide our definition for TP, TN, FP and
FP to then introduce the different performance measures.

Definition of TP, TN, FP and FN

Both DLD-SVM and LPU suggest that a positive finding refers to the detection of
a healthy slice. This is because DLD-SVM seeks for normality, while LPU seeks for
elements from the set Q which, in our case, are healthy slices. This perspective does not
fit the definitions that are typically used in a clinical context. In the latter, a positive
usually refers to a lesion. Therefore, we define a TP as a correctly classified anomaly.

Even though, it is clear that we define TP’s as correctly classified anomalies, it is
still is necessary to establish a measurement unit. Previous state-of-the art works lack
of a clear definition of this aspect, which makes performance comparison difficult.

Table 3.8 summarizes existing works aiming at the evaluation of the coronary heart
disease detection methods, and how they define TP, TN, FP and FN. It can be seen that
only the clinical review from Reimann et al. (2009) clearly stated how these variables
are defined. Although the article of Arnoldi et al. (2010) states that a per-patient and
per-vessel analysis is performed, it does not detail how these measurements are per-
formed. In Tessmann et al. (2008), only information of true positives is provided. In a
later work (Tessmann et al., 2009), the same authors try to provide more information
by performing vessel- and lesion-based evaluations. However, important information is
still missing. For instance, in both articles no details are given on what is considered
a true negative. True negatives are a key in determining the specificity of a classifier.
Moreover, since the above-cited work attempts to discriminate soft plaques and calci-
fications, no details are given on how mixed plaques are evaluated. We believe that
the lack of a clear and standardized definition for TP, TN, FP and FN is an important
weakness of the available literature in this field.

The detection framework we have defined, works on a per-slice basis. Therefore, it
is straightforward to use slices as the evaluating unit and propose slice-based definitions
of TP, TN, FP and FN. In this way, a true positive is any cross-sectional slice that
is correctly classified as anomalous, a true negative is any cross-sectional slice that is
correctly classified as normal. False positives and false negatives are cross-sectional
slices that are misclassified as anomalous and normal, respectively.

However, although the slice-based definitions allow a precise evaluation, they might
be not so relevant from a clinical point of view, where the number of detected lesions
is more pertinent. Moreover, our goal is to detect lesions so as to call the physician’s
attention. If several contiguous slices are detected as anomalous, the center of such
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Table 3.8: TP, TN, FP and FN definition criteria. With the exception of Reimann
et al. (2009), previous works lack of a clear definition of the criteria to define TP’s, TN’s,
FP’s and FN’s.

Description
TP
Arnoldi et al. (2010) Per-patient and per-vessel measurements. No exact in-

formation for TP, TN, FP and FN.
Reimann et al. (2009) Detected segment with stenosis.
Tessmann et al. (2008) Calcification detected as calcification. Soft plaque de-

tected as soft plaque.
Tessmann et al. (2009) Vessel-based: At least one lesion identified in the ves-

sel. Lesion-based: Cylinder with calcification detected as
calcification. Cylinder with soft plaque detected as soft
plaque.

TN
Arnoldi et al. (2010) Not stated.
Reimann et al. (2009) Detected healthy segment.
Tessmann et al. (2008) Not stated.
Tessmann et al. (2009) Vessel-based: Not stated. Lesion-based: Not stated.

FP
Arnoldi et al. (2010) Not stated.
Reimann et al. (2009) Healthy segment marked as stenosed.
Tessmann et al. (2008) Not stated.
Tessmann et al. (2009) Vessel-based: Healthy vessel with at least one detected

lesion. Lesion-based: Not stated.

FN
Arnoldi et al. (2010) Not stated.
Reimann et al. (2009) Stenosed segment marked as healthy.
Tessmann et al. (2008) Not stated.
Tessmann et al. (2009) Vessel-based: Diseased vessel marked as healthy. Lesion-

based: Not stated.
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a group of slices will be highlighted to call the physician’s attention. Under such
a condition, a single detected slice suffices to state that a vascular lesion has been
detected. Based on these observations, we introduce lesion-based definitions (Fig. 3.2):

True Positive. A number k of contiguously detected anomalous slices that intersect
with at least k − 2 contiguous slices labeled as anomalous are considered as one
true positive. Here, we consider that one excess slice detected as anomalous on
either side of the actual lesion, belong to the true positive group. Indeed, such
excess detection(s) do(es) not prevent from calling attention to the actual lesion.
Furthermore, interpretation of the transitions between normal slices and lesions
is often ambiguous even for the experts.

True Negatives. A number k of contiguously detected normal slices that intersect
with k contiguous slices labeled as normal are considered as one true negative.

False Positives. A number k of contiguously detected anomalous slices that intersect
with k contiguous slices labeled as normal are considered as one false positive.
As mentioned above, we exclude from false positives the case of a slice detected as
anomalous, intersecting with a slice labeled as normal, but adjacent to a correctly
detected anomalous group.

False Negatives. A number k of contiguously detected normal slices that intersect
with k contiguous slices labeled as anomalous are considered as one false negative.

Throughout the remainder of this chapter we will provide the measurements using
both definitions: slice- and lesion-based.

Figure 3.2: Illustration of true positives (TP), true negatives (TN), false posi-
tives (FP) and false negatives (FN) - The reference anomalous slices are depicted as
blue lines while the anomalous slices detected by the algorithm are depicted in red. The
rectangles represent the vessels and the white region inside them signifies normal slices.
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Performance measures

Specificity represents the fraction of negative samples that are correctly classified, i.e.
the fraction of normal slices that are correctly identified as normal:

specificity =
TN

TN + FP
. (3.3)

Sensitivity represents the fractions of positive samples that are correctly classified, i.e.
slices containing vascular lesions that are correctly identified as anomalous:

sensitivity =
TP

TP + FN
. (3.4)

Finally, accuracy evaluates the overall performance of the classifier by measuring the
fraction of correctly classified samples. An accuracy of 100% means that the classifier
has correctly labeled all the given samples. It is expressed as

accuracy =
TP + TN

TP + TN + FP + FN
. (3.5)

Anomaly detection problems are highly unbalanced. This means that the sample
size corresponding to one class is significantly higher than the size of the second class.
Typically, the size of the second class instances is represents 10% or less of the size of
the first class instances. In such conditions, accuracy is not an appropriate measure.
As an example, assume a test data consisting of 50 positive instances (anomalies) and
1000 negative ones. Suppose also that only one positive sample was correctly labeled
(TP = 1, FN = 49),while all the negative were correctly classified (TN = 1000,
FP = 0). The reported accuracy for such a system is of 95.33% which is high although
the classifier is almost incapable of detecting anomalies.

To avoid the problems associated with accuracy in unbalanced data, we propose
to use an alternative metric called balanced error rate (BER). BER is the average of
the error rates of the positive and negative classes. A BER of 0% means that all the
evaluated instances were correctly classified. It is defined as:

BER = 1− sensitivity + specificity

2
= 1− 1

2

(
TP

TP + FN
+

TN

TN + FP

)
.

(3.6)

When expressed in terms of the BER, the previous example scores 49% which better
reflects the poor performance of the classifier. Since our goal is to highlight possible
lesions for a clinician, one can argue that we should focus only in maximizing sensitivity
in our system. However, we consider that high sensibilities in combination with low
specificties are not very useful for the clinician, since a significant amount of time is
then necessary to review all the detected locations and remove a high number of FPs.
This is why we prefer to focus on the BER, which searches for the balance between
specificity and sensibility.
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The BER expresses the performance of a classifier as a function of the error, while
accuracy measures the performance in terms of the success rate. The Balanced Clas-
sification Rate (BCR) is a measurement closely related to the BER that measures the
performance of a classifier in terms of the success rate. Therefore, it can be directly
compared with accuracy

BCR =
sensitivity + specificity

2
=

1
2

(
TP

TP + FN
+

TN

TN + FP

)
= 1−BER.

(3.7)

Again, the classification example scores 51% using BCR. This is more representative,
in terms of success rate, than the score obtained using accuracy.

Since BER and BCR are complementary, we will limit ourselves to use the BER to
evaluate performance. Additionally, we will make use of specificity and sensitivity since
they provide detailed information of how positive and negative samples are classified.
Other well known performance measures, based on TP, FP, TN and FN, might be used,
such as Dice similarity index:

D =
2TP

(TP + FP ) + (TP + FN)
,

Jaccard index:
J =

TP

(TP + FP + FN)
=

D

2−D
or Matthews correlation coefficient:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

which also provide convenient evaluation in unbalanced cases. However, the former
two are rather used in other fields and are rarely mentioned in binary classification
literature, while the meaning of the latter is less intuitive. Finally, let us recall that the
empirical risk R (Eq. 2.5) represents a natural way to evaluate the performance of our
classifiers. However, we avoid its use since state-of-the-art methods in our particular
domain do not use it as a performance measure.

The agreement between the data labeled by two observers and our methods was
assessed using two different measures. The first one was the Cohen’s kappa coefficient
measure Cohen (1960) defined as:

κ =
Pr(a)− Pr(e)

1− Pr(e)
, (3.8)

where Pr(a) is the relative observed agreement between raters (in our case, a rater is
either an observer or one of the methods), and Pr(e) is the hypothetical probability
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of chance agreement, using the observed data to calculate the probabilities of each
observer randomly saying each category.

Cohen’s kappa coefficient allows to separately measure the agreement in anomaly
detection between the methods and each of the observers, as well as the agreement be-
tween the two observers and the two methods. To simultaneously assess the agreement
between the two observers and each method, Fleiss’ kappa (Fleiss, 1971) was used.
Fleiss’ kappa is an extension of Cohen’s kappa, which calculates the agreement degree
in classification when more than two raters are present.

3.2 Experimental Design and Evaluation of the Concen-
tric Rings Metric

This section presents a series of experiments on synthetic and real 3D data using
Concentric rings in combination with DLD-SVM and LPU classification schemes.
Synthetic phantoms are used to evaluate the power of the metric in a controlled envi-
ronment and also to tune up the parameters associated to the metric (Section 3.2.1).
The tuned up metric is then evaluated in a real environment using clinical data (Sec-
tion 3.2.2).

3.2.1 Evaluation on Synthetic Data

Four different parameters need to be tuned-up in the implementation of the Concentric
rings metric. These are the number of radial and angular ranges, Nr and Nθ, the radius
of the evaluated region rmax (see Section 2.4.1), as well as the spatial sampling rate for
the computation of each feature F (r, θ).

The rmax parameter. rmax should be selected so that it covers the vessel cross-
section diameter. It is also desirable that it does not fit precisely the vessel diame-
ter, so that it can detect lesions presenting positive remodeling of the vessel wall or
aneurysms. Using this information and taking into account the typical ranges of healthy
arteries (Funabashi et al., 2003), the maximum radius rmax was fixed to 6.5 mm, while
rmin is always set to zero.

Radial and angular ranges. Experiments to define the number of radial and an-
gular ranges were carried out with a number of features N = Nθ × Nr ranging from
24 to 150, which corresponds to 36 different combinations of Nθ and Nr presented in
Table 3.9. Both DLD-SVM and LPU approaches were trained using the 36 different
combinations and evaluated on the testing datasets (refer to Tables 3.2, 3.4 for details)
to determine the best (Nr, Nθ) on each case.

Figure 3.3 shows sensitivity, specificity and BER of anomaly detection using DLD-
SVM and LPU for the various combinations of Nθ and Nr used to compute the
Concentric rings metric. To allow a detailed analysis of the behavior of the methods,
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Table 3.9: Parameter values for Concentric rings tuning. Number of radial and
angular ranges, Nr and Nθ, subsampling rate, rmax and rmin.

Parameter Values
Nr 15, 10, 9, 8, 7, 6
Nθ 10, 9, 8, 6, 5, 4
Subsampling rate 50, 33.33, 25, 20, 10
rmax 6.5 mm
rmin 0 mm

results are shown on a slice-basis. For every pair (Nr, Nθ), the plotted value corre-
sponds to the ρ or t value that gives the lowest empirical risk. The lowest empirical
risk also provided the best response in terms of trade-off between specificity, sensitivity
and BER.

Performance results for DLD-SVM (Figure 3.3 (a)) illustrate the trade-off between
noise removal and information preservation, since when the number of features N is
low (integration over large regions) or high (integration over small regions), the results
are worse. Additionally, it can be seen that, with a fixed moderate value of N , the
configurations with thin rings over wide sectors (Nr � Nθ) should be avoided, e.g.:
with N = 60 the configuration (6, 10) performs clearly better than (15, 4).

An assessment of the misclassified cross-sections permitted us to identify the prin-
cipal causes of errors. In general, the DLD-SVM has lower sensitivity than specificity.
This is due to the fact that the classification algorithm tends to fail on the outer-most
slices of a lesion. At these points, the Concentric rings metric not always gives a
strong response that would permit the identification of a normal or abnormal pattern.
As a consequence, not all the slices of a lesion are detected. Evaluation on a lesion-
basis confirms the behavior since the sensitivity increases between 2.1 and 10.3% in the
evaluated pairs (Nr, Nθ).

Although specificity presents high scores, from Figure 3.3 (a) it can be seen that
even for the (Nr, Nθ) pairs with the best response, it does not score 100%. An inspection
of the results allowed us to determine that the DLD-SVM algorithm always classifies
bifurcations as anomalies. Figure 3.4 (a) illustrates the problem by plotting two fea-
tures obtained from the Concentric rings metric against each other. The plotted
data includes slices from normal vessels containing bifurcations. Lesions are excluded.
However, it can be seen that there are some points that strongly deviate from the cloud
made up by the majority of the points. The most outlying points were identified as
bifurcations. Due to the deviation from a normal symmetric pattern, bifurcations are
also detected as anomalies.

Results obtained from LPU for different (Nr, Nθ) pairs are depicted in Figure 3.3 (b).
Opposite to what occurs with DLD-SVM, the performance of LPU is more robust to
variations in the number of regions Nr×Nθ. Nevertheless, the range of best performing
pairs (Nr, Nθ) coincides with the best performing pairs from DLD-SVM. The pair
(Nr = 8, Nθ = 9) was selected for all the subsequent experiments. Although this is not
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(a)

(b)

Figure 3.3: Specificity, sensitivity and BER with varying (Nr, Nθ) - (a) DLD-SVM
(b) LPU. Results are shown on a slice basis.
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(a)

(b)

Figure 3.4: Illustration of bifurcation misdetection problem in DLD-SVM -
Bifurcation samples are seen as outlying points with respect to the vast majority of con-
centrated points. As an example, the behavior is reflected by (a) plotting two features
from the Concentric rings metric and (b) plotting of λ1 vs. λ2 parameters from the Hes-
sian metric at a given scale.
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Table 3.10: Ring selection summary. Worst and best pairs (Nr, Nθ) according to
BER in both DLD-SVM and LPU. Results are presented on a slice basis.

Classifier Minimum Maximum
Spec. Sens. BER (Nr, Nθ) Spec. Sens. BER (Nr, Nθ)

DLD-SVM 95.61 31.81 36.29 (15,4) 97.57 82.19 10.12 (8,9)
LPU 65.96 100 18.69 (15,10) 76.33 100 11.83 (8,10)

the best performing configuration for LPU it has the second best performance in terms
of the BER. The respective slice-based specificities in DLD-SVM and LPU were 97.57
and 76.34%, sensitivities 82.19 and 100%, and a BER 10.12 and 11.84%. Table 3.10
summarizes the best and worst pairs (Nr, Nθ) in both DLD-SVM and LPU.

The selected pair reflects that the best pairs performances were obtained with in-
termediate values of N = Nr ×Nθ, such that Nr ≈ Nθ: N = 72 with (Nr, Nθ)=(8, 9)
performed the best. This illustrates the trade-off between noise removal and informa-
tion preservation, since when the number of features N is low (integration over large
regions) or high (integration over small regions), the results are worse. Additionally, it
can be seen that, with a fixed moderate value of N , the configurations with thin rings
over wide sectors (Nr � Nθ) should be avoided, e.g.: with N = 60 the configuration
(6, 10) performs better than (15, 4) in both DLD-SVM and LPU.

It is interesting to compare the behaviors of DLD-SVM and LPU. Contrarily to
what occurs in DLD-SVM, under LPU sensitivity outperforms specificity. In the labeled
results, this is reflected by overestimated lesions (in terms of the number of detected
slices). Although LPU succeeds in detecting all existing lesions (in both slice and lesion-
based schemes), it tends to mark slices immediately adjacent to a lesion as anomalous.
The latter diminishes the specificity.

A possible explanation for this behavior comes from the semi-supervised nature of
the LPU algorithm. Since it tries to identify normality by some provided examples
(the labels), slightly diverging normal cases can be excluded. As an example, slices
adjacent to lesions typically suffer from variations, e.g. intensity, that can cause the
misclassification. Our proposal for LPU with progressive increase of the training set,
tries to solve some of this issues (see Section 2.3.4).

Subsample rate. Sampling inside the ”tiles” formed by the Concentric rings met-
ric is performed at subvoxel resolution using tri-linear interpolation. In order to define
the sampling rate, we carried out experiments to determine the influence of the selected
sampling rate.

Assessing the classification performance as a function of the sampling rate is expen-
sive, while the influence of the parameter is not as significant as the one of the radial
and angular ranges. Hence, instead of using the classifiers (DLD-SVM and LPU) to
evaluate the sampling rate effect, we have chosen to use two variable ranking measures.
The first one is the F-score, which was described in section 2.5.2. The use of synthetic
phantoms, where the ground truth is known, allows the usage of a supervised metric
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Table 3.11: Classifiers performance as a function of the sampling rate. BER
performance of DLD-SVM and LPU for the pair (Nr = 8 and Nθ = 9) with varying
sampling rate. Only the sampling rates with the best scores were evaluated. Results are
presented on a slice basis.

Classification method 25% 20% 10%
DLD-SVM 11.313 11.310 11.310
LPU 11.842 11.842 11.843

such as F-score. However, since our goal is to reduce the dependence on labels in the
design and implementation of a vascular classification framework, we have chosen to
use also an unsupervised metric. The selected metric is entropy

Equations 2.30 (F-score), 2.33 (entropy) were applied to each of the features ob-
tained for a fixed pair (Nr = 8, Nθ = 9) with a varying sampling rate. Table 3.9
presents the evaluated sampling rates. They are all expressed as a percentage of the
image intra-slice resolution. Figure 3.5 depicts the obtained scores.

Results show that the scores obtained through entropy and F-score are coherent.
In both cases, using a sampling rate between 25 and 10% provides the best scores. To
confirm it, we trained DLD-SVM and LPU classifiers using features obtained with the
three sample rates and a fixed pair (Nr = 8, Nθ = 9), and assessed their performance.
Results, in terms of the BER, demonstrated that classification is robust to the sampling
rate parameter. For both classifiers, differences in the BER, appear only at the third
decimal digit (Table 3.11). Based on the results, a sampling rate of 20% of the intra-
slice resolution was used for all the experiments. It has a good performance and it is
computationally less expensive than 10% rate.

3.2.2 Evaluation on Patients’ Data

In the following, we evaluate the performance of DLD-SVM and LPU classifiers, while
using the tuned up COncentric rings metric. The results obtained when comparing
the labels assigned by our method, with respect to each of the observers, are summarized
in Tables 3.12 and 3.13. Minimal, maximal and average values of specificity, sensitivity
and BER are presented. The values are consistent with the results obtained on synthetic
data. Moreover, the behavior of DLD-SVM and LPU remain constant. LPU tends to
have a higher sensitivity, at the cost of increasing the number of false positives, while
DLD-SVM is more conservative. The main consequence of this behavior is that LPU
has lower values of specificity and BER.

Table 3.14 presents the kappa coefficient obtained when comparing the proposed
methods with the annotations from two different observers, as well as the comparison
between both observers. Although not universally accepted, Landis and Koch (1977)
supply a table for comparing the κ coefficients. According to this table, agreement in
all cases is considered substantial (κ ∈ [0.61− 0.80]). These results are also consistent
with the evaluation of specificity, sensitivity and BER using the observer’s annotations
as ground truth: our two methods performed better with respect to observer 1 than
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(a)

(b)

Figure 3.5: Optimal sampling rate definition - Scores using (a) F-score and (b)
entropy are averaged on a ring basis. In both cases, the best responses are obtained
between 25 and 10%.
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Table 3.12: Performance of Concentric rings and DLD-SVM over real patient
data. These values were obtained on the testing subset (Tab. 3.2) of the cardiac set 1, by
using observers’ annotations as ground truth.

Observer Specificity Sensitivity BER
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Slice-based
1 78.22 94.44 87.56 66.10 87.56 83.14 9.00 27.84 14.65
2 69.60 88.43 84.45 49.84 83.67 79.31 13.85 40.28 18.12
Lesion-based
1 71.45 93.82 72.60 71.33 98.35 91.17 8.15 28.71 18.08
2 65.96 82.12 72.10 60.03 96.72 88.64 11.11 36.15 19.63

Table 3.13: Performance of Concentric rings and LPU over real patient data.
Results are obtained by using observer’s annotations over a percentage of cardiac set 1 as
ground truth.

Observer Specificity Sensitivity BER
Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

Slice-based
1 50.00 79.51 67.21 88.88 100 90.00 15.42 27.71 22.39
2 50.00 75.24 66.56 88.40 100 89.96 16.80 28.09 23.10

Lesion-based
1 50.00 74.7 55.46 100 100 100 12.65 25.00 22.27
2 50.00 70.12 54.27 100 100 100 14.94 25.00 22.86

with respect to observer 2.

3.3 Other Candidate Features Tuning

This section describes the tuning performed on other candidate features (section 2.4.2).
The goal is to parametrize the features such that they are directly comparable to the
Concentric rings. First, we describe the configuration of the Steerable features
(sec. 3.3.1) followed by the configuration of the remaining features (sec. 3.3.2). Ta-

Table 3.14: Kappa coefficient. Cohen’s in the first two columns and Fleiss’ in the
last one. Cohen’s Kappa coefficient between observers 1 and 2 is of 0.79. Cohen’s Kappa
coefficient between DLD-SVM and LPU was of 0.72.

Observer 1 vs. Method Observer 2 vs. Method All
DLD-SVM 0.72 0.69 0.72
LPU 0.68 0.69 0.69

72



3.3 Other Candidate Features Tuning

ble 3.16 summarizes all the parameters of every metric.

3.3.1 Steerable Features

Steerable features (Zheng et al., 2007) require the definition of two parameters: the
sample pattern to be followed and the sample rate at which points will be sampled
along the pattern. The Concentric rings metric was designed under the assumption
that normal vessels are nearly symmetric. For this reason, the metric follows a circular
pattern in the extraction of its features. To remain coherent, we use a circular pattern
to sample the steerable features, as well as the same circle size (rmin = 0, rmax = 6.5
mm for coronary arteries).

The sampling rate required a more careful evaluation. Tessmann et al. (2009)
propose to sample points following a circular pattern with radius 4 mm. However,
their approach differs from ours, since the sampling is done over a cylinder, so it is not
directly applicable to our case. Thus, to determine a suitable sampling rate we have
used a methodology similar to the one used to tune the Concentric rings metric.
We have performed an initial sampling using a very fine resolution, i.e. 1041 sampling
points for the 20 measures. This represented a total of 20820 values. In order to evaluate
the discriminative power of each feature, when varying the number of sample points,
the F-score was used. The adopted strategy consisted in sub-sampling the spatial
locations at which the different measures were evaluated. An incremental sampling
rate ∈ [2, 3, 4, 10, 15, 20] was applied, while evaluating the F-score on each new subset
to guarantee that the discriminative power was not lost. Results showed that, even for a
high sub-sampling rate, the discriminative power of these features was not significantly
altered (Figures 3.6 and 3.7). Setting the sub-sampling rate to 20, the number of
sampling points was reduced to 50 per feature, which represents a total of 1041 values.

Although 1041 values per sample can be suitable for evaluating DLD-SVM and
LPU approaches, this number can still be too high when the amount of data is limited.
Therefore, we evaluated the relevance of each of the features that build up Steerable
features in order to select the most promising ones. For this purpose, we also made
use of the F-score, since it is a metric that allows fast evaluation. Furthermore, we also
evaluated the features using entropy by assuming no labels where available. Figures 3.8
and 3.9 summarize the F-score and entropy behavior for each feature.

The plots show that there is some coherence in the results obtained with each of the
measures and both F-score and entropy lead to similar feature ranking lists (Table 3.15).
The ranking obtained for zero order features is the same with both measures, while in
the higher order features both measures agree at least in the worse ranked features.

Using the classification from Table 3.15, twelve measures were selected from steer-
able features: log I,

√
I, Ix, Iy,

√
|∇I|, log |∇I|, Ixx, Iyy, Ixy, |H|F , log |H|F and√

|H|F . We chose to select the best ranked features from each order (zero, first and
second) instead of selecting the overall best ranked features, so as to keep information
of different nature. If the overall ranking was used, second order features would have
been rejected.

Let us recall that F-score and entropy do not measure the same criterion over data,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.6: F-score as function of spatial locations sub-sampling in zero and
first order steerable features. (a) I, (b)

√
I, (c) I2, (d) I3, (e) log I, (f) Ix, (g) Iy, (h)

|∇I|, (i)
√
|∇I|, (j) |∇I|2, (k) |∇I|3, (l) log |∇I|.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.7: F-score as function of spatial locations sub-sampling in second order
steerable features. (a) Ixx, (b) Iyy, (c) Ixy, (d) |H|F , (e)

√
|H|F , (f) |H|2F , (g) |H|3F

and (h) log |H|F .
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Figure 3.8: F-score summary for steerable features - Features of order zero (I), one
(Ix, Iy and |∇I|) and two (Ixx, Iyy, Ixy and |H|F ) are presented.

Figure 3.9: Entropy summary for steerable features - Features of order zero (I),
one (Ix, Iy and |∇I|) and two (Ixx, Iyy, Ixy and ||H||F ) are presented. Opposite to F-score,
best ranked features when using entropy are the ones with the lowest entropy.
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Table 3.15: Steerable features ranking using F-score and entropy. The ranking is
obtained exclusively by means of the scores obtained from F-score and entropy. No SVM
training is performed.

1 2 3 4 5 6 7 8
0 order
F-score log I

√
I I I2 I3 - - -

Entropy log I
√
I I I2 I3 - - -

1st order
F-score Ix Iy

√
|∇I| |∇I| log |∇I| |∇I|2 |∇I|3 -

Entropy log |∇I|
√
|∇I| Ix Iy |∇I| |∇I|2 |∇I|3 -

2nd order
F-score Iyy Ixx Ixy |H|F

√
|H|F log |H|F |H|2F |H|3F

Entropy log |H|F
√
|H|F |H|F Ixy Iyy Ixx |H|2F |H|3F

the former being supervised, while the late is not. Therefore, although some coherence
is expected, the ranking is not exactly the same. Hence, the selection was done by
averaging the ranking position obtained by use of entropy and F-score. Guyon and
Elisseeff (2003) suggest the inclusion of noisy variables and reject all the features that
are ranked below them. However, in our experiments, the noisy variables were always
ranked in the last positions. The selected subset of steerable features was used in cases
where the available training data was reduced (such as in feature selection).

3.3.2 Other Features

Hessian eigenvalues. In our experiments, we are interested in observing the behav-
ior of the λi values of the Hessian matrix at different scales. Typically, the scale is
taken to be the standard deviation of the Gaussian function σ. We associate the evalu-
ated scales to the evaluated radii from Concentric rings. Thus, 8 different scales are
evaluated and we define the maximum scale to be the rmax = 6.5 mm parameter from
Concentric rings. The smallest scale evaluated was 1 mm.

Flux and MFlux. For the sake of coherence, Flux and MFlux were evaluated at the
same number of radii as Hessian eigenvalues. These correspond to the number of rings
from the Concentric rings metric. The maximum radius is taken to be rmax = 6.5
mm and the minimal 1 mm. The remaining parameters values were fixed following
the seminal proposal from Lesage (2009). These are: number of equi-angular contour
points N = 8, and Gaussian standard deviation σ of the order of the image resolution
used to regularize the gradient field. Concerning exclusively MFlux, Lesage (2009)
proposes conservative threshold values Tlow = −24 HU and Thigh = 576 HU comprising
contrast-enhanced arterial blood, which we have kept.
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Core. Similarly to Flux and MFlux, N = 8 points per contour, and 9 different radial
extents were evaluated for Core, respecting the restriction rmax = 6.5 mm. The σr
parameter (see Eq. 2.18) was fixed following the recommendations from Fridman (2004):
σr = r

4 , where r denotes the evaluated radius.

Ribbon. The radius of the external ring rext followed the same range of values as all
the other metrics (with rmax = 6.5 mm). The values for rint are obtained from the
relationship that holds between the two radii, rext =

√
2rint. Sampling inside regions

Aint and Bext was chosen to be the same as the one used for the Concentric rings
metric (20% voxel intra-slice resolution).

Ball measure. The thresholds required for the Ball Measure were fixed using the
same values defined for MFlux. However, initial experimentations showed a very weak
response of the metric, when using these thresholds. Empirically, the thresholds were
re-fixed to Tlow = 126 HU and Thigh = 676 HU. Radii values for the ball were the same
as the ones used for all the other metrics.

Inertia moments. The only parameter that needs to be fixed for inertia moments
is the size of the region of interest (ROI) where the moments are computed. We used
a circular ROI, centered at the vessel axis, with radius varying within the same range
as in all the other metrics.

3.4 Discussion

In this chapter we have presented the experimental design of the metric we have formu-
lated, Concentric rings, as an alternative input for the anomaly detection problem
solved using DLD-SVM and LPU. The experimental design has focused in determining
the three main parameters that Concentric rings requires. These are the maximum
radius, rmax, the radial and angular ranges and the sampling rate. Experiments were
performed on synthetic phantoms that provided a controlled environment.

An evaluation of DLD-SVM and LPU, using Concentric rings, on patients’ data
permitted us to demonstrate the feasibility of both our selected classifiers and the de-
signed metric to solve our particular problem. Moreover, the results permitted us to
define a behavior pattern for DLD-SVM and LPU. DLD-SVM is a conservative ap-
proach where lesions tend to be underestimated. Nevertheless, it has the disadvantage
of labeling bifurcations as anomalous. This was however expected, since bifurcations
deviate from the normal cross-sectional patterns.

Although LPU does not fail in bifurcations, provided that normal samples of bi-
furcations are included in the Q set, it tends to overestimate the lesions. We consider
that one of the reasons for the overestimation of lesions in LPU comes from a possible
lack of sufficiently representative set of normality (the Q set). However, we believe that
this effect can be diminished with our LPU with progressive increase of the training
set formulation. The latter will be evaluated in the subsequent chapter.
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Table 3.16: Summary of other candidate metrics tuning. Parameter values used
in the extract features from the different candidate metrics. Parameters common to all
metrics are grouped for simplification.

Parameter Value
Common parameters
Number of scales/radii 8
Minimum Radius 1 mm
Maximum radius 6.5 mm

Steerable features
Number of samples per slice 52

Flux, MFlux and Cores
N 8
MFlux
Tlow -24 HU
Thigh 576 HU
Cores
σr

r
4

Ribbon
rint

rext√
2

Sampling rate 20% of intra-slice resolution

Ball measure
Tlow 126 HU
Thigh 676 HU
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Once again, we should recall that the goal of our proposal is to call the physician’s
attention by marking potential lesions. Figure 3.10 shows an example of the obtained
results in a real dataset, how we foresee it as a clinical application. In Figures 3.11 and
3.12 several examples of labeled vessels using both DLD-SVM and LPU are presented.

(a)

(b) (c) (d)

Figure 3.10: Examples of anomaly detection results using Concentric rings.
(a) 3D view of the coronary tree showing the locations of three slices: A containing a
calcification, B normal and C containing a bifurcation. Slice A was correctly detected as
anomalous by both LPU and DLD-SVM, while slice B was correctly classified as normal.
In slice C, LPU correctly detected the bifurcation as normal, and DLD-SVM marks it as
anomalous. (b), (c) and (d) respectively represent these three cross-sections.

The final part of this chapter has been devoted to the parametrization of the re-
maining sets of candidate metrics. We have determined them following the guidelines
provided by the parameters defined for the Concentric rings metric, so that a fair
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(a)

(b)

(c)

(d)

(e)

Figure 3.11: Comparison of DLD-SVM and LPU - Each sub image contains on top
the result from DLD-SVM and on bottom the result from LPU. The DLD-SVM algorithm
tends to under estimate anomalies, whereas LPU overestimates them.
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(a)

(b)

(c)

(d)

(e)

Figure 3.12: Comparison of DLD-SVM and LPU - Each sub image contains on top
the result from DLD-SVM and on bottom the result from LPU. The DLD-SVM algorithm
tends to under estimate anomalies, whereas LPU overestimates them.
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comparison can be performed. The next chapter will make use of all the herein tuned
metrics to construct an optimal subset of features.
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4

Feature Selection for SVM-based
Vascular Anomaly Detection

In the Chapter 2, we introduced all the elements that make up our anomaly detection
framework and Chapter 3 was devoted to the experimental design and evaluation of the
proposed Concentric rings metric and the tuning of the remaining candidate feature
sets. Using all the above mentioned elements and the tuned features, this chapter aims
at the contruction of an optimal classifier that is obtained by determining the best
feature subset among all the proposed candidate metrics. The evaluation of all pos-
sible combinations, among the candidate metrics, would be too expensive. Therefore,
we make use of the feature selection strategies that were introduced in Section 2.5.
Namely, we evaluate our non supervised and semi-supervised feature selection proposal
(Section 4.2.1) followed by the more classical supervised schemes (Section 4.2.2). The
performance of the feature sets obtained through each method was assessed by using
them as inputs for the DLD-SVM an LPU algorithms (Section 4.3). Moreover, in
Section 4.4, we evaluate how the selected subsets perform when they are used in con-
junction with other state-of-the-art classifiers. Results are presented both raw and after
applying the proposed enhancement through bias variation (Section 4.3.2). Finally, we
carry out an assessment of our proposed LPU with progressive increase of the training
set (Section 4.5) using phantom data.

All the feature selection methods that we have introduced require a criterion that is
used to determine which metrics are either removed (if backwards elimination is used)
or included (in the case of forward selection). For this matter, the first section of this
chapter (Section 4.1) is devoted to assess the individual performance of the different
metrics when they are used in conjunction with DLD-SVM and LPU. This is followed
by the metric ranking necessary for the supervised strategies (F-score, Random forests
and SVM-RFE).

A discussion based on the obtained results is presented on Section 4.6.
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4.1 Individual Performance of the Metrics

In this section we assess the different metrics individually in order to obtain a ranking
that will be later used for feature selection. First, we assess the performance of the
metrics by means of DLD-SVM and LPU, and each method’s empirical risk (sec.4.1.1).
Second, we make use of the supervised methods to provide metric ranking. Let us
remark that by means of the supervised strategies (F-score, RF and SVM-RFE) there
is no information of how well a metric performs by itself.

4.1.1 Metric Performance Assessment for Feature Selection Using
DLD-SVM and LPU

The set of features defined in Section 2.4.2 1 , for which tuning parameters were es-
tablished in the previous section, were individually evaluated in order to assess their
performance and to compare it with the results obtained with Concentric rings. Fig-
ure 4.1 shows the performance of each of the candidate features (including concentric
rings) when used to classify anomalies with DLD-SVM on patient’s data. Figure 4.2
presents the same results with the LPU algorithm. The results confirm the expected
behavior as for the comparison between slice- and lesion-based measures, i.e. the sensi-
tivity generally increases, while the specificity decreases, when analyzed on lesion-basis.

The expected increase in sensitivity results from the fact that one correctly detected
anomalous slice within the whole extent of a lesion is enough to consider that the lesion
was detected.

The decrease in specificity is explained by the fact that the proposed definition for
true negatives and false positives is very strict. Our evaluation scheme allows only one
excess slice detected as anomalous on either side of the actual lesion as belonging to
the true positive group. However, visual inspection shows that frequently more than
one contiguous excess slice is marked as anomalous. In the extreme case, were a vessel
has only one lesion, this will result in a specificity of 50%.

DLD-SVM. The Concentric Rings metric has a good performance in terms of
specificity and sensitivity which is reflected by the lowest BER on a slice basis. It is the
only metric the sensitivity of which does not increase in the lesion-based evaluation.
This is interpreted as incapacity of the Concentric Rings to detect all the existent
anomalies (83.33% of them are detected). At the same time, amongst all the evaluated
metrics, the decrease of specificity of the Concentric Rings is clearly the smallest.
The moderate decrease in specificity suggests that DLD-SVM with Concentric Rings
tends to mark contiguous false positives slices that form a single false positive lesion,
while with other metrics the false positive slices are scattered, thus giving rise to several
false positive lesions.

MFlux, Flux and Core are able to detect all the existent lesions. This is reflected
by a 100% sensitivity in the lesion-based evaluation, although not all the anomalous

1Hessian Eigenvalues, Inertia Moments, Cores, Flux, MFlux, Ball Measure, Ribbon, Steerable
features and Concentric rings.
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(a)

(b)

Figure 4.1: Individual performance of features using DLD-SVM - Results are
presented in (a) slice-basis and (b) lesion-basis.
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slices that are part of a lesion are correctly detected in the slice-based evaluation.
The specificity of these metrics dramatically diminishes to values close to 50%, when
evaluated on a lesion-basis. A visual inspection suggests that these three metrics tend
to mark as anomalous several excess slices located at the lesion border. False positives
between lesions are less frequent. The similar behavior of MFlux, Flux and Core is not
surprising since they are closely related.

With the exception of Steerable features, all the metrics have better specificity
than sensitivity when evaluated on slice basis. In Steerable features however, the
counterpart of having a perfect sensitivity is that the specificity is very low. This means
that very many healthy vessel slices are marked as anomalous. Therefore, the metric
is not adequate for lesion detection.

Despite their frequent use in vascular image enhancement and segmentation, Hessian
eigenvalues and Inertia moments show a relatively poor individual performance in
anomaly detection. One possible explanation is that both metrics usually aim at de-
scribing the shape of the lumen, which does not imply they can detect changes in the
vessel wall appearance. Additionally, Hessian eigenvalues are sensitive to noise, while
Inertia momentss integrate voxels intensities regardless of whether or not they belong
to lumen, wall or background. Consequently, the inertia moments possibly are not
sensitive enough to local changes in lumen and wall, while they detect global changes
in the surroundings.

LPU. Contrarily to the behavior of DLD-SVM, the Concentric rings metric is not
the best performing (in terms of the BER), when using LPU, although the difference
w.r.t. the best metrics is very small. Figure 4.2 shows that Concentric rings detects
all the existent lesions and almost all the slices that are part of the lesions. However,
LPU in combination with Concentric rings tends to overestimate the lesions. A
visual inspection of the labeled slices confirms this behavior. Moreover, this is seriously
penalized when evaluating on a lesion basis.

Once again, MFlux, Flux and Core have a closely related behavior among them.
Also, they conserve the characteristic of having a good detection capacity. By this, we
mean they can detect different type of anomalies instead of focusing on only one type.

While Steerable features, Inertia moments and Ball measure continue to have
a rather low performance, the performance of Hessian eigenvalues is significantly
better than the one observed with DLD-SVM. This phenomenon is explained by the
way the classification algorithms work. DLD-SVM tries to detect high probability
density points by discarding low probability points. On the other hand, LPU can be
seen as a method that tries to find the concentration of a pattern set (the set Q) on
a set of data denoted X. In other words, LPU searches for concentration of points
following a pattern (given by Q) while DLD-SVM tries to find high concentration vs.
low concentration points without specific pattern as an extra condition. The inclusion
of an additional condition in the classification scheme, via labeled data Q, has a positive
effect in the capacity of Hessian eigenvalues to detect anomalies.

Table 4.1 summarizes the feature ranking based on the empirical risk using DLD-
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(a)

(b)

Figure 4.2: Individual performance of features using LPU - Results are presented
in (a) slice-basis and (b) lesion-basis.
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Table 4.1: Individual performance results using DLD-SVM and LPU. Feature
ranking based on the empirical risk obtained from the individual performance evaluation
of each metric.

Ranking DLD-SVM LPU
1 Rings Core
2 Flux Hessian
3 Core Rings
4 MFlux Flux
5 Ball MFlux
6 Ribbon Steerable
7 Steerable Ribbon
8 Hessian Ball
9 Inertia Inertia

Table 4.2: Initial feature ranking using F-score, random forests (RF) and SVM-
RFE. Initial ranking using F-score, random forests (RF) and SVM-RFE. Steerable features
are evaluated over the reduced subset (see Section 3.3.1) and also individually.

Ranking F-score RF SVM-RFE
1 MFlux Rings Core
2 Core Ball Ribbon
3 Flux Core Rings
4 Steerable Ribbon MFlux
5 Rings Flux Flux
6 Ribbon MFlux Hessian
7 Hessian Hessian Steerable
8 Inertia Steerable Inertia
9 Ball Inertia Ball

SVM and LPU for classification. Obtained results are used as a start up for feature
selection using DLD-SVM and LPU.

4.1.2 Metric Ranking for the Supervised Approaches

Table 4.2 summarizes the initial feature ranking obtained with each of the supervised
approaches. Based on this information, the supervised feature selection strategies de-
scribed in section 2.5.2 were applied to each of the ranked sets. In the following, results
obtained with each strategy are further described.

F-score. Metric individual ranking by means of the F-score ranks MFlux, Core and
Flux in the first three positions (Table 4.2). It is not surprising to see these three metrics
close to each other, since they are closely related. Therefore, their discriminative power
should be very similar.
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The Concentric rings metric has a rather low ranking (5th position), when using
F-score. This can be explained by the fact that Concentric rings metric is com-
posed of many local features. Its discriminative power does not rely on how well each
feature discriminates alone, but on a cooperation among features. Only a small sub-
set of features provides a strong response in the presence of a lesion, and this subset
changes depending on the location of the lesion. Therefore, the average individual dis-
criminative power of each feature composing a metric is low. The F-score measures
the discriminative power of each feature, and then the metric ranking provided in
Table 4.2 averages the F-score of the features that compose a metric, to give a final
ranking.

Random forests. It is surprising that a metric such as Ball measure is highly ranked
using random forests while it is among the worst metrics in all the other rankings. The
only possible explanation for this relies on the fact that random forests work under a
principle that is different from the principle of SVM’s. The criterion used to split nodes
in random forests seem to suit the information by Ball measure. This is confirmed
with the individual performance of the metric when used with random forests (see
section 4.4).

SVM-RFE. Metric ranking using SVM-RFE has several points in common with the
other ranking schemes. The worst and best ranked metrics are more or less the same
than with other strategies (although a strict order is never preserved). However, it
should be remarked that the classifier error obtained with SVM-RFE when performing
the training for ranking was considerably higher than with random forests. We compare
SVM-RFE only with RF because they follow the same principle of using all variables in
order to provide feature importance. A further evaluation on this effect will be provided
in section 4.2.2.

4.2 Feature Selection

We evaluated a combination of all the features generated by all the different metrics.
In the absence of any selection strategy, the results in terms of BER were as follows:
43.76% with DLD-SVM and 42.17% with LPU. Furthermore, the training times were
long: 315 and 192 min, respectively. The high computational times and the relatively
low performances justify the use of different feature selection strategies to determine
which combination of metrics leads to a better performance of the classifiers. In sec-
tion 4.2.1, we perform feature selection with our proposed scheme, followed by feature
selection with different supervised approaches (section 4.2.2).

4.2.1 Feature Selection Based on DLD-SVM and LPU

A major concern raises when performing unsupervised feature selection based on the
empirical risk, which is related to the selection of ρ and t (see Eqs. 2.5 and 2.12). The
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problem raises from the same situation so, for simplicity, we will explain it only in terms
of ρ (DLD-SVM). The feature selection scheme implies the optimization of each feature
set. This is, finding a σ and a ρ value that minimize the empirical risk R. However, it
can happen that for two (or more) given subsets the best risk does not appear at the
same ρ value. Moreover, let us recall that ρ affects the computation of R, then varying
ρ would introduce more complexity to the feature selection problem.

A trivial solution to the problem is to perform feature selection on a dataset where
the ρ value is already known. There are major drawbacks for this solution. First, it
will turn the method supervised. Second, while in LPU it is rather simple to know t in
advance, if labeled data is provided (it is the proportion of normal data w.r.t the overall
number of samples), the task is not as simple for DLD-SVM. Although ρ reflects the
absolute concentration of points in a set (normality in our case), it is not possible to
obtain an analytical relationship between ρ and the actual concentration. Therefore,
to have an estimate of ρ, it would be necessary to perform an initial experimentation
to roughly estimate ρ and then perform the feature selection with the determined ρ
value.

Nevertheless, this trivial solution can be adapted to our particular case, whereas
the algorithm remains unsupervised. Our approach uses the empirical risk of single
metrics as the inclusion criterion of the forward strategy. Therefore, we select the ρ
(or t) value from the best performing metric to be used all along the feature selection
process. Roughly, this allows the estimation of ρ and t without requiring to know their
values in advance. However, it should be noted that this approach would no more
be valid if we used a different criterion to determine the inclusion order, such that ρ
(respectively t) was not estimated at the individual performance evaluation stage.

Figure 4.3 shows the evolution of the empirical risk when using a forward strategy
to select features with DLD-SVM and LPU respectively. In both cases, results suggest
that the best subset of features is obtained using the features form the four individually
best-ranked metrics from Table 4.1.

4.2.2 Supervised Feature Selection

Based on the metric ranking results from Table 4.2, the three different supervised
strategies, F-score, random forests and SVM-RFE, were performed.

F-score

Figure 4.4 presents the obtained average error of each of the evaluated feature sets. It
should be noted that the use of only one metric (the best ranked) presents the highest
average error, which suggests that it is not adequate to only use MFlux. The curve
of classification error from Figure 4.4 suggests that the first 5 ranked metrics should
be kept to build up the feature set. Hessian eigenvalues, Inertia moments and the
Ball measure are excluded. The fact that Hessian eigenvalues, Inertia moments
are excluded from the optimal set confirms the hypothesis that they are not suited for
describing changes in the vessel wall.
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Figure 4.3: Empirical risk evolution in feature selection with DLD-SVM and
LPU - The best response is obtained when four metrics are used to generate the feature
set using LPU and DLD-SVM.

Figure 4.4: Classification error and BER evolution using F-score as a criterion
for feature selection - Classification error and BER evolution as a function of the number
of included features in the training-validation sets. The abscissa represents the number of
included metrics based on the F-score ranking from Table 4.2. The average error obtained
with only one metric is given as a reference.
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It worths to further elaborate on the results from Figure 4.4, where the classification
error is compared with the balanced error rate (BER) that we use to quantitatively
evaluate our results. To perform a better analysis, Figure 4.4 shows the evolution of
the error for all metrics, instead of only the first six ranked that were evaluated.

The classification error refers to the ratio between the number of failures of a clas-
sifier and the total number of evaluated samples. Figure 4.4 permits to see that both
curves do not follow each other strictly. Local maxima and minima of the curves ap-
pear at different points. For instance, the best BER occurs when six metrics are used,
whereas the error classification finds its minimum using five metrics.

Classifiers do not deal with the concept of balanced error because their goal is to
minimize the overall error. This is a critical problem on highly unbalanced data such
as these that are to be dealt with in anomaly detection. As a toy example, a typical
learning algorithm prefers to correctly classify samples coming from the largest class
at the price of misclassifying a few samples on the small class. Under such a situation,
the classification error diminishes while the BER is seriously affected. Once again, we
consider this problem can be aliviated through our formulated LPU with progressive
increase of the training set (see Section 4.5).

According to error evolution the features composing the 5 selected metrics were
used to define the training-testing sets of DLD-SVM and LPU algorithms.

Random forests

Figure 4.5 presents the obtained average classification error of each of the evaluated
feature sets. Let us recall that the random forests approach works using backwards
elimination described in Section 2.5.2. According to Figure 4.5, the subset that pro-
duces the smallest error is based on two metrics: Concentric rings and Ball measure.

SVM-RFE

Like Random forests, SVM-RFE selection strategy started with the individual ranking
from Table 4.2) and iteratively eliminated the worst ranked metrics, according to the
backwards elimination scheme described in Section 2.5.2. At each iteration, the error of
each new subset was computed. Figure 4.5 presents the obtained average error at every
step. Despite an initial ranking roughly similar to those obtained with other approaches,
the classification error obtained with SVM-RFE vastly surpasses the classification error
of Random forests. This is also true if compared with the classification error obtained
with F-score. A detailed inspection of the classification results confirmed a very poor
classification performance of SVM-RFE. It not only failed to detect lesions (in some
cases TP = 0), but it also failed to correctly classify normal slices, thus generating
many false positives. That justifies the high error rates.

The explanation for this behavior comes from the fact that SVM-RFE uses a linear
kernel instead of a non-linear one. It has been established that nonlinear separating
surfaces improve generalization over linear ones. This condition seems to have high
incidence in our particular problem. In their seminal work Guyon et al. (2002) proposed
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Figure 4.5: Feature selection error evolution - The curves represent the classification
error evolution during feature selection using backwards elimination with random forests
and SVM-RFE. At iteartion 1, five different metrics are used. On every new iteration a
group of metrics is removed until only one is kept at the fourth iteration.

a version of the SVM-RFE algorithm using non-linear kernels. However, in the same
work they state that the problem is computationally intractable and they only succeed
in evaluating it on a toy example that learns the outputs of an XOR.

Based on these results, we consider that SVM-RFE is not a valid feature selection
method for our problem. Selection based on a method that performs so badly in our
data is not reliable.

4.3 Results of DLD-SVM and LPU Anomaly Detection
with the Selected Best Feature Sets

In this section, we evaluate the subset of features that has been selected to each of the
different approaches. Moreover, testing is also done using the subsets that were rejected
by the each selection scheme. The goal is to assess whether or not the selected subset
really outperforms the others (section 4.3.1). Once the optimal subsets are obtained,
we apply the enhancement algorithm that modifies the bias of the decision function (see
section 2.3.5 for its description) to determine whether or not the classification results
can actually be improved.

4.3.1 Non-Enhanced Results

DLD-SVM and LPU. Figures 4.6(a)- (b) and Figures 4.7(a)-(b) show the obtained
specificity, sensitivity and BER for each case.
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The results of both classifiers using features extracted from 4 different metrics con-
firm that the selected features optimize the classification performance for both DLD-
SVM and LPU. In general, the response of the selected subsets is as expected.

F-score. Figures 4.6(c)- (d) and Figures 4.7(c)-(d) present the obtained results.
In both cases, it can be seen that the best performance of DLD-SVM and LPU is not

achieved using the number of metrics suggested by the selection based on the F-score.
After the inclusion of Steerable features, the performance of both classifiers dra-
matically diminishes. Let us recall that this metric was poorly ranked according to the
unsupervised selection strategies. When a fifth metric is included, namely Concentric
rings, the LPU improves its performance but not significantly. The best response is
obtained using 3 metrics in LPU. In DLD-SVM, it is arguable if the best performance
is obtained with two or three metrics. The lesion-based BER in DLD-SVM with three
metrics is lower than the one obtained with two. However, the learning algorithms
receive slices as inputs and therefore the evaluation criterion should be slices. The
lesion-based metric is an artificial grouping we use to evaluate the clinical relevance of
the classification.

Random Forests. When evaluating the different candidate subsets with DLD-SVM
(Figures 4.6(e)- (f)) and LPU (Figures 4.7(e)-(f)) a situation similar to the one that
occurred with F-score: the best performance is not achieved with the selected subset.
This situation can be explained by the fact that the Ball measure is included in the
selected subset. Ball measure has a poor performance in DLD-SVM and LPU, which
affects the performance of the classifiers. However, the inclusion of a sufficient amount
of additional features diminishes the negative effect of Ball measure. As a consequence,
the performance improves. In DLD-SVM it is necessary to add up three more metrics
to see positive effects in performance, while LPU requires the inclusion of only two
additional metrics.

The cancellation of the effect of Ball measure by the inclusion of additional metrics
not only confirms what the literature reports on the robustness of SVM-based methods
to the presence of spurious features (when a sufficient number of good features exist),
but explains the low performance of DLD-SVM and LPU with the F-score selected
subset. The size of the features obtained from Steerable features vastly overpasses
the size of the features obtained from all the other remaining metrics. Therefore, adding
up other features is not enough to cancel the negative effects of Steerable features.

Table 4.3 summarizes the performances of all the subsets selected using different
selection strategies when they were evaluated using DLD-SVM and LPU. The perfor-
mance is presented in terms of the slice-based BER. Here, it is possible to see that
when using DLD-SVM and LPU as feature selection strategies, the selected optimal
set coincides with the real optimal feature set. This does not happen with the other
selection strategies. We consider this not to be surprising. Appropriate features for
density level detection problems should follow certain characteristics that reflect the
concentration of some samples and the low density regions. Therefore, the use of selec-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Feature selection evaluation using DLD-SVM - Unsupervised DLD-
SVM, F-scores and random forest selection schemes are presented in a slice basis in (a),
(c) and (e). Lesion-based results are presented in (b), (d) and (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Feature selection evaluation using LPU - Unsupervised LPU, F-score
and random forest selection schemes are presented in a slice basis in (a), (c) and (e).
Lesion-based results are presented in (b), (d) and (f).
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Table 4.3: Summary of different classification methods performance. The subsets
selected through unsupervised and supervised methods are tested with DLD-SVM and
LPU. The table presents the performance at the expected optimal feature set and the real
one. For every case, the number of metrics used is shown in parentheses. Perfomance is
presented in terms of BER.

Strategy Expected Real
DLD-SVM LPU DLD-SVM LPU

DLD-SVM empirical risk 13.55 (3) - 13.55 (3) -
LPU empirical risk - 15.39 (4) - 15.39 (4)
F-score 50.50 (6) 27.92 (6) 34.28 (2) 21.31 (3)
Random Forests 35.43 (2) 38.39 (2) 33.19 (5) 27.92 (5)

tion schemes that do not work under the density level detection philosophy might lead
to the selection of feature subset that does not contain high and low density regions of
samples. The latter would explain why the subsets selected with F-score and random
forests are not as performant as those selected with DLD-SVM and LPU.

4.3.2 Results Obtained with Bias Variation

Using the different subsets obtained, we have applied the post-enhancement algorithm
previously introduced in Section 2.3.5. Let us recall, that the method consists simply
in variating the term b on the SVM decision function with the guarantee that the error
cannot worsen. Therefore, we have generated random values 4b to adjust the original
value of each of the trained models obtained with the different subsets (Table 4.3). A
total of 100 values were tested for each of the models. The 4b generating the best
response was kept. Table 4.4 summarizes the obtained results.

From these results, it can be seen that it is possible to improve the final classification
results by means of this simple enhancement algorithm. However, it should be remarked
that there is no guarantee that the results will have a significant improvement. As
an example, the result from LPU using the subset obtained with random forests (2
metrics) does not achieve any improvement. Nevertheless, models such as DLD-SVM
trained with the set obtained from DLD-SVM empirical risk, LPU trained with the set
obtained from LPU empirical risk and LPU trained with the set obtained from F-score
(3 metrics) have significant improvement. Therefore, despite the lack of guarantee of
performance improvement, we consider that this algorithm is a good alternative since
the error cannot increase. Moreover, its computational overhead is negligible when
compared to the time devoted to training.

4.3.3 Computational Times

Computational time is a critical factor in clinical practice. We provide an estimation
of the time required to compute each of the proposed metrics (Figure 4.8) and the time
devoted to training with each metric (Table 4.5).
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Table 4.4: Effect of applying algorithm enhancement to the classification. The
enhancement algorithm is applied to the best classification, in terms of BER, obtained with
DLD-SVM and LPU when using the feature sets selected by different strategies.

Feature Selection Method No With
Enhancement Enhancement

DLD-SVM
DLD-SVM empirical risk 13.55 10.41
F-score 6 metrics 50.50 48.36
F-score 2 metrics 34.28 33.97
Random forests 2 metrics 35.43 35.41
Random forests 5 metrics 33.19 32.56

LPU
LPU empirical risk 15.39 10.92
F-score 6 metrics 27.92 27.01
F-score 3 metrics 21.31 16.45
Random forests 2 metrics 38.39 38.39
Random forests 5 metrics 27.92 21.63

Figure 4.8: Computational time of each metric - The plot presents the average time
(in seconds) required to compute a given metric over 300 slices.
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Table 4.5: DLD-SVM and LPU training times using different feature sets.
Training times of DLD-SVM and LPU using the different feature sets are presented in
minutes. The computational time was measured when using cardiac set 2 for training.

Metric DLD-SVM LPU
Rings 75 21
Hessian 54.8 19
Core 55 10
Flux 54.1 11.3
MFlux 52.9 12.1
Ribbon 52.2 12.3
Ball 61.1 14.8
Inertia 52.8 15.1
Steerable 193 39

As can be seen from Figure 4.8, there is a significant difference between the time
necessary to compute the Hessian eigenvalues and the other metrics. This is a conse-
quence of the operations involved in Hessian eigenvalues computation that are highly
time consuming. Nevertheless, it should be remarked that the provided times serve
only to illustrate the computational burden since most of the metrics can be further
optimized.

In what respects the training times, it can be seen DLD-SVM is more expensive
than LPU. This is expected since DLD-SVM has always larger datasets due to the use
of artificially generated data. Another important remark from the results presented in
Table 4.5 relates to the effect that the inclusion of features has on the training time.
It can be seen how a large number of features affects the computational time. As an
example, steerable features always requires a larger amount of time than the other
metrics. However, it should be noted that the same number of features does not imply
the same computational time. Although the training times of metrics producing the
same number of features are close, they are never the same.

Finally, let us recall the training stage is a process that should be performed only
once or rarely, and off-line. Therefore, we consider that the time devoted to metric
computation is more relevant than the training time.

4.4 Comparison With Other Classification Strategies

In the previous sections we used unsupervised, semi-supervised and supervised methods
in order to select subsets of features supposed to have the best discriminative power.
Then we evaluated the actual performance of each of thus selected subsets, in our
anomaly detection scheme, by use of an unsupervised and semi-supervised method,
namely DLD-SVM and LPU respectively. Hereafter, we compare the performance of our
classification approaches, DLD-SVM and LPU, with well-known classifier schemes. We
evaluate two supervised learning methods and one semi-supervised. The first one is the
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classical soft margin SVM (Cortes and Vapnik, 1995), which is a very common method
for classification. Then we evaluate the Random Forests (Breiman, 2001) method. The
latter is not only a feature selection method. Nowadays, it is widely used in the medical
imaging community also for classification. It might be expected that classification based
on Random Forests is likely to perform particularly well with a feature set selected by
a strategy also based on Random Forests. Finally, we evaluate one of the first methods
designed for anomaly detection, the so-called one-class SVM (Schölkopf et al., 2001).

Different strategies could be followed to compare DLD-SVM and LPU with other
classification approaches. Here we have compared the performance of each of the met-
rics individually by using them as input for each of the classifiers. Afterwards, we use
the subsets selected by each of the feature selection strategies.

Individual performance

Figure 4.9 presents the obtained results using One-class SVM, Random forests and
classical Soft-margin SVM.

As with DLD-SVM and LPU, the evaluated algorithms perform poorly when Ball
measure and Inertia moments are used as inputs. Steerable features, which per-
forms poorly with DLD-SVM and LPU, showed the best performance with the classical
Soft-margin SVM. This behavior partially explains the fact that this metric has been
used in works following the same goal that use supervised schemes (Tessmann et al.,
2008, 2009). However, it shall be remarked that Steerable features perform poorly
in Random forests which is another supervised scheme. Let us also note that the results
of Soft-margin SVM with Concentric rings are almost the same as with Steerable
features.

While the best performing metrics remain more or less the same, the key point
that is to be underlined in this evaluation refers to the behavior of anomaly detection
algorithms (DLD-SVM, LPU and One-class SVM) w.r.t. other classification schemes
(Random forests and classical Soft-margin SVM). In general, anomaly detection meth-
ods have a higher sensitivity, i.e. they are better in detecting lesions than standard
classification approaches. Both Random forests and classical SVM have very high speci-
ficities, but low sensitivities. This is, they succeed in classifying the learned classes (as
new normal cases appear they correctly classify them), but when slightly different
samples appear, which often occurs with lesions, they fail. The latter validates the
formulation of our problem as an anomaly detection problem.

Table 4.6 compares the best performing metric of each method. Results show that
DLD-SVM and LPU give the best results among all strategies.

Performance of selected feature sets

Figure 4.10 summarizes the evaluation results of the subsets selected by the different
strategies. We also included the subsets that performed best, using DLD-SVM and
LPU, when these were different from the selected ones.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Performance of other classification strategies - (a), (c) and (e) present
slice-based performance of One-class SVM, random forests and Soft margin SVM. (b), (d),
(f) present lesion-based results.
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Table 4.6: Summary of different classification methods performance. For each
method, the results of the best performing metric are presented. These are Concentric
Rings for the first three classifiers (DLD-SVM, One-class SVM and Random Forests),
Cores for LPU, and Steerable Features for the classical Soft-margin SVM. The results
appear on a slice-basis.

Classification Method Specificity Sensitivity BER
DLD-SVM 87.56 83.14 14.65
LPU 75.35 83.84 20.39
One-class SVM 62.89 78.97 29.06
Random Forests 98.46 41.02 30.28
Soft margin SVM 97.24 38.19 32.28

As it occurred with the individual performances of the metrics, none of the evalu-
ated classifiers performed better than DLD-SVM and LPU (in combination with their
selected feature set). With this, we confirm the quality of our proposed selection scheme
and also the superiority of DLD-SVM and LPU w.r.t. other classifiers in the anomaly
detection problem.

An interesting observation can be made from Figure 4.10 and refers to the best
performing subsets from each classifier. For One-class SVM, the best performing subsets
are the ones obtained with DLD-SVM and LPU feature selection strategies. This makes
sense since One-class SVM is also an anomaly detection approach. Additionally, it can
be seen that Random forests classifier obtains its best response using the two metrics
defined by the Random forests selection scheme and the Soft-margin SVM classifier
obtains its best performance with six features selected by the F-score selection method.
If we recall that F-score uses a Soft-margin SVM at final stage of the feature selection
process, we can conclude that feature selection gives the best results when the used
classifier is based on the same methodology, (i.e. Soft-margin SVM classifier also gives
the best results with the subset selected by use of a method involving Soft-margin SVM.
Nevertheless, let us recall that none of the proposed strategies outperforms DLD-SVM
and LPU.

Results from the Soft-margin SVM, and especially from Random forests, show that
their performances are poor, while the residual BER observed on the training set was
very low (below 5%). A similar behavior was observed in the individual feature eval-
uation in the previous section. This means that the Soft-margin SVM and Random
forests perform very well on the training sets, while they perform poorly on the testing
sets, which demonstrates one of the principal weaknesses of supervised methods. Their
accuracy is poor with new arriving data since they cannot adapt to the heterogeneity
of anomalies.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Performance of other classification strategies using optimal feature
sets - (a), (c) and (e) present slice-based performance of one-class SVM, random forests
and soft margin SVM. (b), (d), (f) present lesion-based results.
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4.5 Preliminary results of LPU with progressive increase
of the training set

This last section aims at the evaluation of our proposed LPU with progressive increase
of the training set. From what has been presented, it is evident that our method requires
the extraction of the vessel centerline axis. For our experimentations, manual axes have
been traced so that we can evaluate the real performance of our method without the
introduction of errors coming from other sources. However, this represents a limitation
in the evaluation of the LPU with progressive increase of the training set approach
on real data. Manual annotations are tedious and time consuming. Therefore, it is
difficult to perform an evaluation over a large database of annotated vessels. Hence,
the validation of this proposal is a preliminary experimentation over phantom data.

To validate the method, we have defined six different case scenarios. The first five
cases simulate the incremental process described in section 2.3.4. The last case aims at
illustrating the situation where the condition |X| � |Q| is broken. The configuration
of each case was as follows:

Case 1. Normal vessels,modeled as straight tubes are included in the Q set. No bi-
furcations or normal vessels with nearby structures are included. Sets sizes are:
|Q1| = 500, |X1| = 15000.

Case 2. Bifurcations and normal vessels with nearby structures are included, so as to
provide a larger set of examples. Sets sizes are: |Q2| = 1000, |X2| = 19000.

Case 3. After classification is performed in case 2, a number of random samples labeled
as normal in X2 are added to Q2 and new unlabeled samples are added to X2.
Here, we aim at evaluating if random samples can improve the performance, as
opposite to what was done in Case 2 where the new labeled samples were manually
selected. Sets sizes are: |Q3| = 1200, |X3| = 22000.

Case 4. A total of 100 samples, labeled as normal in case 3 are added to Q2. X is not
modified. Sets sizes are thus: |Q4| = 1300, |X4| = 22000.

Case 5. A total of 300 samples are added to Q4 containing standard normal vessels,
bifurcations and vessels with nearby structures. X set is incremented with 1000
more samples. |Q5| = 1600, |X5| = 23000.

Case 6: Condition |X| � |Q| is broken. We define |Q6| = 1200, |X6| = 1600.

Figure 4.11 shows the evolution of specificity, sensitivity and BER (on slice-basis)
for every case, where the first five can be considered as successive iterations of this
version of the LPU algorithm. From these results, it can be seen that LPU generally
performs well in terms of sensitivity. As more normal samples are included to the Q set,
the specificity starts to improve. Since the sensitivity remains unchanged, therefore,
the BER decreases. Even for the 4th case, where no samples are added to X, since the
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Figure 4.11: Effect of adding samples to Q and X datasets - The balanced error
rate and the specificity tend to improve. When the condition |X| � |Q| is broken the
results are poor.

condition |X| � |Q| holds, the performance of LPU still increases. Finally, on case 6,
it is possible to see that the performance of LPU is poor.

Although the overall results show that the method permits improvements in the
classification, two key issues need to be taken into account. First, an increase in the
size of the sets Q and X also implies an increase in the computational time. Second,
even at the infinite sample case the classifier is likely to make some errors. Therefore,
a trade-off between computational time and capacity of improvement should always be
evaluated.

4.6 Discussion

In this chapter, we have followed different strategies in order to find a subset of features
that optimizes the performance of our classifiers. In order to perform feature selection,
it was necessary to first rank individually the proposed set of metrics since all of our
approaches require an inclusion/rejection criterion. We have used the empirical risk,
in DLD-SVM and LPU strategies, the variable importance for Random forests and
SVM-RFE, and the F-score itself as criteria.

Individual evaluation of metrics by using them with DLD-SVM and LPU algo-
rithms demonstrated that our metric is suitable for the purpose of anomaly detec-
tion and, moreover, it outperformed all other evaluated metrics when used with DLD-
SVM. Moreover, the feature sets selected using DLD-SVM and LPU both contained
Concentric rings as part of the selected metrics. This confirms the potential of our
metric in the vascular lesion detection problem. The results also show that first order-
based metrics such as MFlux, Flux and Cores have a good performance.

The evaluation of different feature selection strategies allowed us to see that our
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Table 4.7: Individual vs. optimal subset performance. For each method, the BER
of the best performing metric and the optimal subset are presented.

Configuration DLD-SVM LPU
Individual metric 14.65 20.39
Optimal subset 13.55 15.39

unsupervised and semi-supervised approaches based on the empirical risk of DLD-
SVM and LPU are well suited for the anomaly detection problem. This was somehow
expected. The features used under an anomaly detection approach should follow the
formulated hypotheses of such a problem, i.e. anomalies should be represented as low
density regions. Since DLD-SVM and LPU work under that principle, it is expected
that they are able to find the features that best suit the formulation. At the same time,
this explains why the set of features found by Random forests and F-score were not the
optimal ones.

To validate the relevance of the selected classification framework and the anomaly
detection formulation of our problem, we have compared DLD-SVM and LPU to other
classification strategies. Two of them were classical classification schemes such as Ran-
dom forests and Soft-margin SVM, while the third one was One-class SVM, which
is a well-known anomaly detection method. One of the first conclusions that can be
obtained from these comparative results is that the anomaly detection scheme outper-
forms the classical approaches. The three anomaly detection schemes, namely DLD-
SVM, LPU and One-class SVM, have outperformed Random forests and Soft-margin
SVM. Anomaly detection approaches have a higher capacity of detecting newly arriv-
ing patterns of anomalies. Additionally, DLD-SVM and LPU have shown to perform
better than One-class SVM.

The evaluation of different feature subsets through One-class SVM, Random forests
and Soft-margin SVM shown that, in general, a feature subset will perform better when
the classifier in which it is evaluated is of the same nature as the algorithm used for
feature selection. As an example, the feature subset selected through Random forests
had the best performance when used with Random forests classifier. Similarly, the
subset selected through F-score (in combination with Soft-margin SVM) had the best
performance when evaluated with the Soft-margin SVM classifier. In what concerns
One-class SVM, its best performance was achieved with the subsets obtained through
DLD-SVM and LPU selection strategies. This can be explained by the fact that all of
them are anomaly detection approaches. However, let us remark again that no other
classifier showed a better performances than DLD-SVM or LPU either with individ-
ual metrics or feature subsets. Regarding the performance of the algorithms with a
combination of metrics or with a single one, it is always arguable if it worths to in-
clude a feature selection step. Table 4.7 compares the results from DLD-SVM and
LPU when using the best performing individual metric and the optimal feature subset.
The results obtained from DLD-SVM might suggest that the feature selection step is
undesired since it implies a computational overhead while the results of using a single
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metric are comparable. Contrarily, a significant improvement can be seen for LPU. We
consider that a feature selection step is always necessary even for cases such as the one
of DLD-SVM. The main reason is that, in advance, it is impossible to know if such a
situation can occur. A priori it is not possible to know which combination of features
will have the best performance. The goal of the feature selection strategy is to provide
an answer to this issue.

Although our results are promising there are still things that can be improved. The
problem we are trying to solve is highly imbalanced and this can introduce difficulties in
the classification. Particularly for LPU, the effects of finite samples can be significantly
enhanced under a class imbalance situation. For this purpose, we proposed a variant of
the LPU algorithm, which increases the size of the training set in order to reduce the
finite samples effects. Preliminary results on phantom data show that this approach is
promising. However, a validation on real data is required.

Finally, we have shown that the use of an additional step of the learning phase can
improve the detection rate. We have used a simple approach that consists in varying the
b parameter of the SVM decision function. Although results are not always improved,
their quality never diminishes. Hence, it is recommended to use such an enhancement
step, since it can ameliorate results and its computational overhead is minimal.
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5

Inter-phase Vessel Segment
Registration to Corroborate
Anomaly Detection

In this chapter we present an approach that seeks to exploit information provided by
multiple cardiac phases by means of a local registration of potential lesions. Here,
we aim at simulating the procedure followed by a physician when trying to diagnose
coronary artery disease. After detecting a potential lesion in a particular time-frame
or cardiac phase, the physician often seeks the lesion in another time-frame (typically,
these are end-diastole and end-systole) to confirm the initial diagnosis. In the previous
chapters, we tackled the automatic detection of potential lesions. At this point, we
want to tackle the second stage of the diagnosis, which consists in confronting the
information found at one time-frame with another one. For this purpose, our goal is
to define a registration framework that allows matching different cardiac time-frames
without being computationally expensive. More particularly, we focus in designing a
method that copes with the registration of an automatically selected volume of interest
(VOI) surrounding the potential lesion, instead of the registration of the whole image.

We first define image registration and exhibit its principal components (Section 5.1).
Subsequently, we present related works in literature dealing with vascular image reg-
istration (Section 5.2). In Section 5.3 we present our approach, which consists in an
automatic VOI selection using a priori knowledge, followed by an intensity-based reg-
istration scheme. The evaluated similarity metrics are also presented. Feasibility of
the approach is then demonstrated through the evaluation of the whole method (Sec-
tions 5.4 and 5.5). The obtained results are used in Section 5.6 in combination with
anomaly detection problem to evaluate its applicability to vascular lesion detection.
Finally, the chapter closes with a discussion of the proposed framework.
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5.1 Image Registration: Definition

Image registration is the process of deforming one image, denoted the moving image
IM (x), to fit another image, denoted the fixed image IF (x), by applying a transforma-
tion T(x) to IM (x). The registration problem is formulated as an optimization problem
that seeks to minimize a metric S with respect to the transformation T(x):

T̂ = arg min
T

S(T; IF , IM ) (5.1)

where T̂ is the optimal transformation.
In order to solve the optimization problem (Eq. 5.1), several aspects need to be

addressed. First, a transformation T(x) determines the types of deformations that shall
be applied to IM (x) in order to fit IF (x). An interpolator evaluates the transformed
moving image at non-voxel positions. The similarity metric S evaluates the quality of
the alignment between the images. Typically, S is obtained by evaluating all image
voxels. However, a subset may suffice. In this case, a sampler component is necessary.
Finally, an optimizer uses S as a criterion to obtain the optimal parameters of the
transformation. Multiresolution strategies are often adopted to improve the results
and / or speed-up the registration process. In this case, the registration starts with
images of low complexity (smoothed or/and downsampled) that is increased gradually.
The designed component for this approach is often called a pyramid. Figure 5.1 shows
the general components of the registration framework as proposed by Klein et al. (2010).

For further details on the elements of a registration algorithm, the interested reader
is referred to more extensive reviews (Ibánez et al., 2005; Klein et al., 2010; Maintz and
Viergever, 1998).

Figure 5.1: Basic registration framework components - Two input images IF (x)
and IM (x), an interpolator, a transform, an optimizer and a similarity metric. Samplers
and pyramids are optional. Adopted from Klein and Staring (2010).
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5.2 Related Work

Most of the studies in vascular image registration have been done in the 2D-3D domain
(Kita et al., 1998; Lange et al., 2003; Reinertsen et al., 2007; Ruijters et al., 2009; Tur-
geon et al., 2005). However, 3D-3D vascular registration is a challenging problem that
poses additional difficulties. Correspondence and alignment ambiguities are inherent
to the general task of automatically registering images of tubes (Aylward et al., 2003).
The registration process is further complicated by the fact that vessels are typically
surrounded by larger organs that swamp the similarity metric. In consequence, vas-
cular registration has not been as widely studied as the registration of other organs.
Extensive overviews (Hill et al., 2001; Maintz and Viergever, 1998) of medical image
registration methods do not consider this domain.

Our bibliographic review is limited to 3D-3D vascular registration (which for sim-
plicity we will refer as 3D registration). Methods that tackle this problem can be
divided into two broad categories. First, there are methods that aim at registering
static vascular images from longitudinal studies. On the other hand, there are algo-
rithms for the registration of dynamic vascular images. These are images including
movement. Dynamic vascular images imply additional challenges related to artifacts
generated by movement.

5.2.1 Static Vascular Image Registration

To the best of our knowledge, the first work on 3D vascular image registration is the
one from Aylward et al. (2003). In their approach, they rigidly register a vessel model,
defined by a centerline and a radius, to a target image using an intensity-based met-
ric (Aylward et al., 2001). For this purpose, vessel centerline needs to be previously
extracted on the source image. Jomier and Aylward (2004) extend this work to include
non-rigid transformations. Using this vascular model-to-image registration method,
Chillet et al. (2003) developed a method to form vascular atlases by means of vascular
distance maps. In a similar fashion, Cool et al. (2003) constructed a density map image
of presegmented vessels which are then registered using an affine tissue-based mutual-
information registration to create a vascular density atlas. Wong and Chung (2006)
propose a method to detach abnormal regions from a segmented vessel. In the method,
the initial axis of a tube model is set to the original centerline of a vessel segment.
The model is then deformed such that its boundary is precisely registered onto only
the vessel boundaries of normal regions. The registered tube model is then refined by
a subsequent surface matching process so as to virtually generate an abnormality-free
vessel. Using vessel matching, Charnoz et al. (2005) propose a tree matching algorithm
for intra-patient hepatic vascular system registration. Vascular systems are segmented
from CT images, and then modeled as trees. Starting from the tree root, edges and
nodes are iteratively matched. The algorithm works on a set of match solutions that
are updated to keep the best matches thanks to a quality criterion. Xue et al. (2006)
perform extraction and matching of the neonatal cerebral vasculature from MRA-Time
of Flight (MRA-TOF) images. After vasculature extraction, vessel segments are iter-
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atively connected to compose a vessel tree that is automatically labeled. After this,
an indirect vasculature registration method is used to recover global deformation be-
tween two vessel trees, and vessel matching is performed by comparing a cost function
measuring average spatial distance between two vessel branches.

One of the main disadvantages of the above mentioned methods is that they strongly
rely on an initial model or segmentation. A bad segmentation implies a bad result in
the registration process. To overcome this, some other methods try to enhance vessels
instead of explicitly segmenting them. As an example, Suh et al. (2010) generate a
vesselness image (probability of having a vessel at any given voxel). The latter is used
to construct a weighting factor that modifies an intensity-based metric so as to give
preference to vascular structures. The vesselness image is used to perform non-rigid
vascular registration within the context of a mutual information metric. Alternatively,
Heldmann and Papenberg (2009) develop a combined two-dimensional morphological
and Gaussian scale-space to allow the non-rigid image registration of tubular tree-like
structures. The goal of their multilevel framework is to avoid locally ambiguous map-
pings between parts of the images by removing morphological details, but also finding a
global optimal solution by spreading remaining local information using Gaussian scal-
ing. Hameeteman et al. (2010) rely on image intensities to apply a non-rigid registration
of the carotid artery. The resulting transformation is used to calculate the distensibility
of the carotid artery at a given position.

5.2.2 Dynamic Vascular Image Registration

The registration of dynamic vascular images, such as the registration of coronary arter-
ies, implies additional difficulties. The presence of motion can produce strong displace-
ments of the vessels and it also causes image artifacts, introducing additional problems.
In fact, dynamic cardiac (3D+t) registration is rather new (Lapp et al., 2004; Lom-
baert and Cheriet, 2010; Wilson et al., 2006). Most of the existing methods for dynamic
coronary arteries registration rely on 2D techniques applied to coronary angiography
(2D+t) (Ruijters et al., 2009; Turgeon et al., 2005). Only a few methods tackle the
problem of 3D+t images.

One of the first attempts was the work from Laguitton et al. (2006), which simply
tried to follow points placed at arteries locations through different time-frames. The
local characteristics of the vessel are estimated on the first time-frame (3D volume)
of the cardiac dataset and then used to track the vessel along the sequence. The
correspondence between two volumes is solved through a region-matching based on
a criterion of minimal distance combining moment-based descriptors with intensity
information. Metz et al. (2009) adapted the non-rigid registration method proposed by
Wierzbicki et al. (2004) to obtain a 4D deformation model of the coronary arteries on
CTA images at different ECG phases. Similarly, Zhang et al. (2009b) include a non-rigid
image registration using free-form deformation step for coronary artery segmentation
and tracking through dynamic sequences. The goal of the registration step is to include
prior probability information from previous time-frames to increase the robustness of
the temporal tracking.
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The same non-rigid approach was then used to model coronary artery motion (Zhang
et al., 2009a). In this work, arteries are first enhanced using a multiscale Hessian-
based vessel enhancement filter (Frangi et al., 1998) to facilitate the identification of
coronaries. Recently, a study was performed to compare the method with a template
matching scheme (Zhang et al., 2010).

All the previously described approaches tackle registration by using the information
of the complete image. Contrarily, our proposal seeks to reduce the size of both IF and
IM VOIs that exclusively contain structures of interest. In our case, we are exclusively
interested in potential vascular lesions (i.e. plaque). Structures such as the ribs, the
lungs or even healthy sections of the arteries do not provide useful information for coro-
nary artery disease detection. Even more, cardiac CT images are typically large, which
results in large computational times when the whole volume is used for registration. For
this matter, our proposed algorithm focuses in selecting only candidate regions likely to
have coronary disease, i.e. regions that have been detected as anomalous in a cardiac
time-frame. Then, it uses a priori knowledge to define a region that matches, with
high probability, the potential lesion zone in another time-frame. Once the two VOIs
are identified, registration is performed among them so as to compare the information
contained in both subvolumes.

5.3 Our Registration Approach

The proposed registration approach (Figure 5.2) performs three different steps to
achieve final registration of potential vascular lesions: automatic definition of the vol-
ume of interest (VOI), coarse rigid registration and deformable registration. The first
stage makes use of a priori knowledge to construct a VOI at two different cardiac phases
that should be then registered. The second step aims at reducing the displacement be-
tween the structures from both images. This step is necessary to bring the vessels
close enough. The obtained transform is used to initialize the deformable registration
step. At this last step, actual deformations between the structures are captured. In
practice, the first time-frame used typically corresponds to the diastole and the second
one to the systole. This is respectively referred to as 75% and 40% of the heart beat
in ECG-synchronized reconstructions.

5.3.1 Automatic VOI Definition

The aim of this stage is to reduce the size of both IF and IM by defining VOIs that
exclusively contain potential lesions. According to Shechter et al. (2006), the maximum
displacement magnitude that can be observed on a coronary branch, has been evaluated
to be about 1 cm between two temporal instants. Therefore, we consider that if we
identify a lesion at a time-frame, it is possible to find it, with high probability, at a
second time-frame within a distance of 1cm from its original location. We use this
information to define an algorithm that constructs two VOIs to be registered using the
anomaly detection information (see Chapters 2 and 4). The main steps of the algorithm
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Figure 5.2: Overall registration process - Initial VOI selection (Section 5.3.1) is
followed by a coarse rigid registration that brings the structures of interest closer (Sec-
tion 5.3.2). Finally, a non-rigid registration is performed (Section 5.3.3). For simplicity,
VOIs are presented in a 2D axial view. The final transformation is denoted as T(x) where
T(x) = T2(T1(x)), T1 represents the coarse rigid registration and T2 denotes the final non-
rigid registration. Time-points usually correspond to diastole (75%) and systole (40%)
respectively.
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are described as follows (Figure 5.2):

1. Using the slices labeled as anomalous of a particular dataset and for one time-
frame (see Chapters 2 and 4), potential lesions are identified. We define a po-
tential lesion as a group of neighboring slices labeled as anomalous. We denote
the subvolume of interest formed by the grouping as I∗F .

2. Starting from the borders of I∗F , a ring with thickness DM is adjusted and mapped
to the moving image IM using world coordinates. The mapped VOI is denoted
as I∗M .

In practice, the construction of I∗F requires an additional step. In many cases, the
grouping of detected anomalous slices gives out a VOI that does not contain sufficient
information that can be exploitable for the registration, leading to the so called aperture
problem. In such a case, the reliability of the obtained registration would be very low.
Therefore, it is necessary to add up a distance DF around the detected potential lesion
so that the information contained by I∗F can avoid the aperture problem. The definition
of values for DM and DF is discussed in Section 5.5.

5.3.2 Coarse Rigid Registration

The coarse rigid registration algorithm relies on a rigid body transformation

T1(x) = R(x− c) + t + c (5.2)

where R denotes a rotation matrix, c the rotation center, t a translation and x repre-
sents a point in space. The image is treated as a rigid body that can be translated and
rotated, but it cannot be scaled.

The registration is performed at a single resolution using an adaptive stochastic
gradient descent optimizer (Klein et al., 2009) with a maximum of 500 iterations. In
each iteration, 2048 samples are obtained from I∗F using a random sampler (Klein et al.,
2010) and a linear interpolator is used to evaluate the transformed I∗M .

5.3.3 Deformable Registration

The deformable registration consists of a non-rigid transform using a free form defor-
mation (FFD) model based on B-cubic splines (Rueckert et al., 1999):

T2(x) =
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (5.3)

where φi+l,j+m,k+n represent the control points of a mesh Φ and Bl, Bm, Bn represent
the basis functions of the B-spline:

B0(u) = (1− u)3/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u+ 1)/6
B3(u) = u3/6
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The registration process uses a coarse-to-fine multiresolution strategy. At each
resolution, 500 iterations are, at most, executed by an adaptive stochastic gradient
descent optimizer. In each iteration, 2048 samples are obtained from I∗F using a random
sampler and a linear interpolator is used to evaluate the transformed I∗M . A 3rd order
B-spline interpolator is employed to apply the final deformation transform to I∗M .

The registration stages were performed using elastix (Klein et al., 2010), a pub-
licly available package for image registration 1.

5.3.4 Similarity Metrics

In this section we decribe a set of already existent similarity measures that permit to
evaluate the quality of the alignment between the registered images. All the herein
described candidate metrics were carefully evaluated (sec. 5.5.2) in order to select the
best performing.

Mean Squared Differences (MSD). This metric computes the mean squared
pixel-wise difference in intensity between IF and a transformed version of IM (here,
we drop the asterisks in order to simplify notations of the sub-images). It is defined as:

MSD(µ, IF , IM ) =
1
|ΩF |

∑
xi∈ΩF

(IF (xi)− IM (Tµ(xi)))2, (5.4)

where µ represents a vector containing the parameters associated to the transformation
and ΩF denotes the domain of IF .

Normalized Correlation Coefficient (NCC). The metric computes the pixel-wise
cross-correlation coefficient and normalizes it by the square root of the autocorrelation
of the images:

NCC(µ, IF , IM ) =

∑
xi∈ΩF

(
IF (xi)− ĪF

) (
IM (Tµ(xi))− ĪM

)√∑
xi∈ΩF

(
IF (xi)− ĪF

)2∑
xi∈ΩF

(
IM (Tµ(xi))− ĪM

)2 , (5.5)

where ĪF and ĪM represent the average gray values of IF and IM (Tµ(x)) respectively.

Mutual Information (MI). Mutual information (Maes et al., 1997; Mattes et al.,
2003; Viola and Wells, 1997) measures the information contributed to the overlapping
volume by each image being registered together with the joint information. elastix
uses the definition given by Thévenaz and Unser (2000):

MI(µ, IF , IM ) =
∑
m∈Lm

∑
f∈LF

p(f,m; µ) log2

(
p(f,m; µ)

pF (f)pM (m; µ)

)
(5.6)

1http://elastix.isi.uu.nl
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with LF and LM being sets of regularly spaced bin centers, p the discrete joint prob-
ability, and pF and pM the marginal discrete probabilities of IF and IM , obtained by
summing p over m and f , respectively. The joint probabilities are estimated using
B-spline Parzen windows.

Normalized Mutual Information (NMI). The normalized mutual information is
defined as

NMI =
(H(IF ) +H(IM ))

H(IF , IM )
= 1 +

MI(IF , IM )
H(IF , IM )

, (5.7)

where H denotes entropy.

5.4 Experimental Setup

The present section is devoted to describe all the required elements for the evaluation
of the proposed registration methodology. First, we specify the characteristics of the
data that was used in our experiments, followed by the performed experiments.

5.4.1 Data

A total of 40 CTA datasets were used along the evaluation. The datasets were ac-
quired on a 64-row CT scanner (Brilliance 64 − Philips Healthcare, Cleveland, OH)
with a standard scan protocol using the following parameters: 120 kV, 300 mAs, colli-
mation 52 × 1.5 mm, rotation time 0.35 seconds and scan time 10-14 seconds. Image
reconstructions were made with an in-plane pixel size of 0.37× 0.37 mm2, matrix size
512 × 512, slice thickness 0.9 mm, increment 0.45 mm, with an intermediate recon-
struction kernel (B). 38 datasets contained 2 cardiac phases, namely, 40% and 75%.
The remaining two contained 11 cardiac frames, corresponding to the following ECG
phases:{0, 10, 20, 30, 40, 50, 60, 70, 75, 80, 90} (here, we drop % for simplicity).

Out of the 40 datasets, 30 were selected exclusively for automatic VOI selection val-
idation. More particularly, for the validation of the DM parameter. The 10 remaining
datasets were used to assess the registration stage. Moreover, 5 of the latter were used
to determine the optimal value of DF . It should be noted that only 10 datasets were
used in the assessment of the registration stages because, as it will be seen in section
5.4.2, this assessment requires previously extracted vessel centerlines, which were only
available for these 10 datasets.

Since image quality plays an important role in registration, the images used for this
purpose were classified according to their quality as poor, moderate or good (Table 5.1).
This information was used to assess the performance of the method when varying the
image quality.

5.4.2 Experiments

In the following we describe the experiments that were performed to evaluate our
approach. First, we focus in determining the optimal parameters for VOI selection.
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Table 5.1: Cardiac CT datasets. Classification of the CT datasets used for evaluation,
according to the number of timeframes and image quality.

Time-frames Poor Moderate Good
{40, 75} 1 4 3

{0, 10, 20, 30, 40, 50, 60, 70, 75, 80, 90} 1 0 1

Then, using these parameters we register the subvolumes using the metrics described
in 5.3.4 to determine the metric with the best response. Using the best configuration
we compare our registration scheme with the one proposed by Zhang et al. (2009a,
2010) were cardiac phases are registered incrementally.

Automatic VOI selection

Subvolumes I∗F were selected from the coronary arteries, namely, RCA, LAD and LCX
on a diastolic time-frame (75%) of each dataset. At this stage, the potentially diseased
arterial segment to be registered was manually selected by clicking at its endpoints.
These segments were selected to make sure that the corresponding subvolumes con-
tained a variety of situations that can result from the anomaly detection stage. This is,
the resulting subvolumes should contain, among others, bifurcations, lesions and even
normal sections (in a smaller proportion, in order to include possible false positives).
Furthermore, for each artery, one volume should be in the proximal (P), another one
in the distal (D) part of the artery, and the third one in-between (O).

Shechter et al. (2006) state that the maximum displacement magnitude that can
be observed on a coronary branch between two time-frames is 1 cm, when the cardiac
cycle is subdivided into 10 equally-spaced phases. However, our approach does not
make use of subsequent time-frames. A set of different VOIs I∗M were constructed
using different values of DM to determine the maximum displacement value between
systolic and diastolic time-frames (40% and 75% respectively). Evaluated values were
1, 1.5, 2 and 2.5 cm.

Tuning of the parameter DF was done after DM was correctly parametrized. Dif-
ferent values of DF ∈ {0.5, 1, 1.5} cm were used to construct I∗F . Using an already
defined value for DM , the two volumes I∗F and I∗M were registered and the obtained
volume was evaluated.

The selection of optimal DM and DF was assessed through a visual inspection
inspired from the work of Mattes et al. (2003) and by means of ITK-SNAP soft-
ware (Yushkevich et al., 2006) (which allows spatial synchronization of volumes). For
DM definition, a VOI is denoted correct if the potential lesion in IF was found in the
subvolume I∗M (DM ). For DF tuning, a VOI I∗F (DF ) is denoted correct if the resulting
registered subvolume contains the same anatomic structures as the original subvolumes.
The DM and DF values that lead to the maximum number of correct VOIs were kept.
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Time-frame registration

Time-frame registration was first devoted to the selection of a similarity metric. Once
a metric was selected, we performed an experiment to evaluate the pertinence of only
using two time-frames for registration. Previous works from Metz et al. (2009); Zhang
et al. (2010) have used an incremental registration approach, where time-frame t is
registered to time-frame t + 1 and the resulting transform is used to initialize the
registration between frames t and t+2 and successively. In our approach, we avoid this
incremental registration to reduce computational time. However, our experimentation
aims to determine if there is a loss in quality when a direct registration between end-
systole and end-diastole is done. To evaluate this aspect, we made use of the two
datasets containing all the cardiac time-frames (see Table 5.1). We perform a direct
registration between time-frames 40 and 75 and we compare it with an incremental
registration.

Registration results assessment was done by evaluating the quality of the final reg-
istration result. Although our main interest are lesions, it is difficult to use them as
landmarks to validate registration since it is not an easy task to determine with preci-
sion correspondence between spatial points at different temporal instants. To overcome
this, we used vessel centerlines as an evaluation criterion. For this purpose, the center-
lines of each artery were manually drawn and used as a reference.

For the selection of the similarity metric, ninety pairs of VOIs, I∗F and I∗M (3 VOIs
on three arteries, namely, RCA, LCX and LAD, in 10 datasets), were generated through
automatic VOI selection assuring each contained at least one of the arteries of interest.
For incremental registration evaluation, the I∗M VOIs were automatically generated at
each of the intermediate phases used (70, 60, 50 and 40%).

After VOI generation, these were registered using the proposed approach. The
obtained transformation was used to deform the centerline from I∗M and the distance
between the deformed centerline of I∗M and the one from I∗F was then measured as an
indicator of vessel displacement. Let CF be the vessel centerline from image I∗F and CM
the deformed centerline from I∗M , the average distance between centerlines proposed by
Zhang et al. (2009a) was employed as a measure:

D(I∗F , I
∗
M ,T) =

1
NF

NF∑
i=1

‖vi − l(vi,T(I∗M ))‖+
1
NM

NM∑
j=1

‖pj − l(pj , I∗F )‖, (5.8)

where NF and NM are the total number of vertices in CF and CM , respectively. For
each vertex v ∈ CF , the function l(v,T(I∗M )) calculates the closest vertex to v on a
vessel CM . Similarily, for each vertex p ∈ CM , the function l(p, (I∗F )) calculates the
closest vertex to p on a vessel CF .

Figure 5.3 (a) illustrates the way that the measurement D(I∗F , I
∗
M ,T) is computed

given two axes of different lengths and how this is strongly penalized. In Figure 5.3 (b),
we illustrate how this behavior affects the assessment of our registration process. Due
to the different size of volumes I∗F , I∗M , the axis contained by one of the subvolumes
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can be larger, resulting in a high distance score. To avoid this, we have selected to
compute the metric in CM , only between the points corresponding to the transformed
extreme vertices of CF .

5.5 Results

In this section we present the results obtained from automatic VOI definition and the
registration assessment.

5.5.1 Automatic VOI Definition

Table 5.2 summarizes the results obtained from visual inspection of the generated VOIs
I∗M , when using different maximum displacement values DM . Results show that 1 and
1.5 cm are not enough to capture the movement between end-diastole and end-systole.
The highest number of errors occurs in the RCA. This is coherent with what has been
reported in literature. The RCA is reported to be the artery with largest motion. VOIs
formed by displacements of 2 and 2.5 cm succeeded in always containing the structure
of interest. Although using 2.5 cm includes more information in the subvolume, our
goal is to reduce the amount of processed information.

Table 5.2: Definition of DM for automatic VOI selection. - For each evaluated
displacement, the number of subvolumes I∗M that contained the structures of interest con-
tained in I∗F is presented.

DM RCA LAD LCX
P D O P D O P D O

1 cm 15 0 11 30 21 30 22 17 21
1.5 cm 26 12 18 30 30 30 30 23 25
2 cm 30 30 30 30 30 30 30 30 30

2.5 cm 30 30 30 30 30 30 30 30 30

After defining the value for DM , we proceeded to evaluate the required value of DF .
Table 5.3 summarizes the obtained results. As a reference, the table also presents the
results of the registration when only the potential lesion is used and a larger VOI is not
created (we denote it DF = 0). These results allows us to confirm that the information
contained by the VOI made up by the potential lesion is not sufficient to have good
registration results.

From Table 5.3, it can be seen that even in some cases DF = 0.5 cm, it is possible
to obtain successful results. However, it is not always sufficient. Although DF = 1
cm shows almost perfect results, we prefer to conservatively keep DF = 1.5 cm for the
construction of I∗F .
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(a)

(b)

Figure 5.3: Registration Assessment Distance Measurement - (a) The distance
measurement concept. At top, the blue lines represent the distance between a vertex
v ∈ CF and the the closest vertex in CM found by function l(·). At the bottom, the red
lines represent the distance between a vertex p ∈ CM and the the closest vertex in CF
found by function l(·). As can be seen, from the right-most part of CM , the fact that the
axes are not of the same length is strongly penalized by the metric. Due to the different
size of volumes I∗F , I∗M , the axis contained by one of the subvolumes can be larger, as
shown in (b). To avoid strong penalization of the distance metric, the distance measure is
only computed between the transformed extreme vertices of CF , which are represented by
two arrows in (b).
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Table 5.3: Definition of DF for automatic VOI selection. - For each evaluated
distance, the number of correct registrations is presented.

DF RCA LAD LCX
P D O P D O P D O

0 0 0 0 0 0 0 0 0 0
0.5 cm 0 0 0 3 0 2 1 1 1
1 cm 5 4 5 5 5 5 5 5 5

1.5 cm 5 5 5 5 5 5 5 5 5

5.5.2 Time-frame Registration

Registration results in terms of residual centerline offset (Eq. 5.8) using different metrics
are presented in Figure 5.4. As a reference, the initial displacement of the arteries (no
registration) was also computed. For simplicity, results from each VOI are summarized
on an artery-basis (instead of a segment-basis). Figure 5.5 illustrates an example of
vessel centerline displacement correction. In general, the best results are obtained
when using mutual information as a metric. In consequence, this metric was used in
the subsequent experimentations. Figure 5.6 shows different examples of registered
vessel segments using mutual information.

Although mutual information gives the best results in terms of final arterial dis-
placement, from Figure 5.4 it can be seen that the residual offset at the RCA is somehow
large. This can be explained by the fact that, for most cases, the initial displacement
of the RCA between two time-frames is too large and the registration algorithm cannot
recover from it. Actually, although I∗M contains the structure of interest (potential
lesion), as it was assessed when validating the value of DM , it cannot completely in-
clude a subvolume equivalent to I∗F and centered in the displaced pattern. Figure 5.7
illustrates the problem. Furthermore, an analysis of the final vessel displacement in
terms of image quality (Figure 5.8) showed that the initial displacement has a higher
incidence in the results than the image quality. The algorithm performs well on poor
quality images but cannot recover excessively large displacements.

An evaluation of the residual offsets showed that the algorithm cannot sufficiently
compensate initial displacements above 1.5 cm in both the RCA and LCX. The problem
does not occur at the LAD. We consider that the registration does not compensate the
initial displacement when the final distance between centerlines is above the average
maximum vessel diameter. For the coronaries we consider this value to be 5 mm.
The latter motivates our evaluation of an incremental approach that makes use of
intermediate phases in order to register end-diastole to end-systole (Zhang et al., 2009a,
2010).

Table 5.4 compares the results obtained by direct and incremental frame registra-
tion on two datasets. The quality of dataset I was rated as poor, while the one from
dataset II was classified as good. In 9 cases the direct frame registration outperforms
incremental frame registration, while the latter is better in the remaining 9. Although
the incremental approach performs better in most of the cases where the initial dis-
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(a) (b)

(c)

Figure 5.4: Coronary displacement measured through Eq. 5.8 - Initial coronary
displacement and residual offset after non-rigid registration using SSD, NCC, MI and NMI
metrics for (a) RCA, (b) LAD and (c) LCX arteries.

(a) (b)

Figure 5.5: Example of coronary artery centerline displacement correction -
(a) Initial displacement. The complete centerlines of the RCA at two time-frames are
presented in blue and magenta, while green and red represent the respective centerlines
segments falling within the VOI to be registered. (b) Dark green line (almost superimposed
onto the red one) represents the result of applying the obtained transformation to the green
centerline segment.
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(a)

(b)

(c)

Figure 5.6: Vessel registration examples - From left to right images represent time-
point 75, time-point 40 and registered image. Images have been cropped to the size of I∗F
to ease comparison. Arrows show the vessels of interest. (a) Coronal view of LAD segment
registration (low quality image). Initial distance between centerlines is of 8.03 mm. After
registration, the distance is reduced to 0.68 mm. (b) Coronal view of a LCX proximal
segment (good quality image). Initial distance between segments is of 12.22 mm. After
registration, the distance is reduced to 0.84 mm. (c) MIP view of a proximal RCA segment
(good quality image) RCA at time-point 75 and RCA at time-point 40 have a separation
of 24.98 mm. After the obtained registration, the distance is reduced to 0.55 mm.
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(a) (b) (c)

Figure 5.7: MIP view of a misregistration problem - The initial distance between (a)
the RCA segment at time-point 75 and (b) the RCA segment at time-point 40 is too large
(35.03 mm). The obtained registration (c) cannot accomplish the structures alignment.

(a) (b)

(c)

Figure 5.8: Final displacement comparison as a function of image quality - Initial
and final displacements per artery when classifying images as (a) good, (b) moderate and
(c) poor quality. On each plot, XXX 1 denotes initial displacement at artery XXX and
XXX 2 the residual offset.
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Table 5.4: Results of distance measuring using direct vs. incremental registra-
tion. Distance between the centerline at end-diastole (75%) of the cardiac cycle and the
end-systole (40%) for three segments (proximal (P), distal (D) and other (O)) of the RCA,
LAD and LCX. Results from two different datasets are presented.

Segment Dataset I Dataset II
Before After After Before After After

transform direct incremental transform direct incremental
transform transform transform transform

RCA P 9.18 1.20 3.61 14.98 0.55 0.50
RCA D 5.42 1.78 1.26 18.25 5.01 4.60
RCA O 6.31 1.31 2.48 15.03 7.82 6.68
LAD P 9.08 0.44 0.55 10.90 0.49 0.75
LAD D 7.98 1.96 0.98 8.67 0.52 0.68
LAD O 8.03 0.68 1.00 10.52 0.49 0.83
LCX P 13.33 0.73 1.15 14.21 1.03 0.80
LCX D 13.27 2.16 0.87 14.93 3.30 2.92
LCX O 13.31 1.54 1.07 14.72 2.81 2.75

placement between vessels is large (as in RCA and LCX segments), the method does
not perform well for very large distances, where the direct approach also fails. Previous
works in literature (Zhang et al., 2009a, 2010) evaluating the incremental frame regis-
tration approach do not report such a large initial displacement. We believe that such
a variability of the results can be influenced by the quality of images. Although a direct
registration can hardly deal with a large displacement, the incremental approach can
be affected by the residual errors that are propagated at every new registration step.

A comparison of the obtained images using each method, shows that the higher
number of deformations applied in the incremental frame registration approach can
cause excessive blurring in the final image and distortion of important structures such
as calcified plaques. Figure 5.9 illustrates the problem. Although both approaches
align the structures of interest (i.e. vessels and plaque components), the incremental
frame approach tends to produce extremely smoothed images.

The overall process time for an artery segment was of 8 min in the direct approach
and of 37 min for the incremental approach using a Pentium 4 with 3 GHz and 4 GB
RAM. For this measurement, VOIs of similar sizes were selected ranging from 2.1 x 2.1
x 2.3 mm to 2.3 x 2.3 x 2.5 mm

5.6 Lesion Detection through Inter-phase Vessel Regis-
tration

In the previous sections we demonstrated the feasibility of our proposal by manually
delimiting different VOIs, registering them and assessing the quality of the results
through a distance measure. In the following, we connect the anomaly detection stage
(Chapter 2) with the registration. More particularly, we replace the manually selected
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(a) (b) (c)

Figure 5.9: Differences in the registration result using direct and incremental
approaches - The calcification present in the fixed image (a), as well as the vessel general
structure, are better conserved with the direct approach (b). The result obtained with the
incremental approach (c) is more blurred.

VOIs by VOIs based on the anomaly detection stage. Our aim is to study how the
information from the registered VOIs can be exploited to improve the detection.

Based on the procedure described in Section 5.3, we introduced some modifications
in order to be able to compare the information from each of the time-frames. The final
procedure is as follows:

1. The best performing configurations of DLD-SVM and LPU (Chapter 4) were
applied to 10 datasets (see Section 5.4) at cardiac time-frame 75%. The latter is
denoted the fixed image IF .

2. The potential lesions detected on IF were used to construct the different VOIs.
These are denoted I∗F .

3. The different I∗F were used to obtain the corresponding I∗M volumes using time-
frame 40% (denoted IM ).

4. The different volumes, I∗F and I∗M , were then non-rigidly co-registered.

5. The best performing configurations of DLD-SVM and LPU were applied to all
the obtained T(I∗M ).

6. Anomaly detection results from every I∗F and I∗M are confronted.

Table 5.5 summarizes the number of lesions found in the 10 images IF as well as
how many could be confirmed by the registration process.

Results from Table 5.5 show a pattern that has been seen at the classification stages:
LPU has a better capacity to detect anomalies, while DLD-SVM is more conservative.
Also, it is possible to see that in two cases (Datasets 04 and 05) an incorrectly detected
lesion is rejected by the confrontation with the second time-frame. Lesion evaluation

129



5. INTER-PHASE VESSEL SEGMENT REGISTRATION TO
CORROBORATE ANOMALY DETECTION

Table 5.5: Anomaly detection confrontation. A confirmed anomaly means that at
both time-frames an anomaly is detected.

Dataset DLD-SVM LPU
Detected Confirmed Detected Confirmed

00 1 1 1 1
01 2 2 4 4
02 3 3 3 3
03 3 3 3 3
04 2 1 2 1
05 1 0 2 1
06 1 1 1 1
07 1 0 1 1
08 3 2 3 3
09 1 1 1 1

at two time-frames can help in the removal of false positives. However, the way the
correspondence is formulated, it is not possible to detect initially undetected lesions.

Figure 5.10 shows three different examples of anomaly correspondence. In the first
case, a detected anomaly in IF is rejected at IM (Figures 5.10 (a) and (b)), while in
the other two cases it is confirmed.

An inconvenient of our approach is the lack of a higher precision in the registration.
This is specially true for the right coronary artery (see Figures 5.10 (a), (b), (e) and
(f)). In such a cases, the anomaly detection algorithm can be inaccurate owing to
inaccuracies introduced by the registration process. In such a case, it is not useful
to try to confirm / reject potential anomalies. However, in other cases, such as the
one shown in Figures 5.10 (c), (d), the registration process can provide additional
information. For instance, the moving image shows a better view of the calcification.

An interesting aspect that worths to be mentioned is related to bifurcations. In
Table 5.5, we selected to remove from the statistics the bifurcations marked as anoma-
lous by the DLD-SVM algorithm since we already know that the algorithm fails there.
On the other hand, LPU does not detect bifurcations as anomalies but it tends to
overestimate the lesions. Under such a condition, it could be desirable to combine the
informations provided by the two methods using time-frame registration.

5.7 Discussion

In this chapter we have presented an approach for the registration of potential vascular
anomalies. The method does not focus in the registration of the anomalies, as proposed
in a previous work by Saur et al. (2008), but registers the potential anomaly and its
surroundings to the (hopefully) corresponding fragment of the image reconstructed at
a different time-frame. With this in mind, the proposed approach is more related to
vascular registration than exclusively to anomaly registration.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Examples of anomaly detection confrontation - Confronting anomaly
detection results obtained through LPU. Left column represents time-frame 75% and the
right one time-frame 40%. Anomalous sections are marked in translucent red, except in (a),
where the anomaly corresponds to the section in-between the two red lines. (a) An anomaly
is detected in the RCA, which is rejected in the second time-frame (b). A calcification is
detected in the LAD (c) and confirmed in the second time-frame (d). Detection results in
the RCA (e) are confirmed in the second time-frame (f). However, the registration result
in the latter case is of poor quality.
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The selected approach has the advantage that it relies solely on image intensities
for registration. With this, it overcomes problems associated to vascular registration
methods that require a good initial model/segmentation (Aylward et al., 2003; Chillet
et al., 2003; Cool et al., 2003; Jomier and Aylward, 2004; Wong and Chung, 2006; Xue
et al., 2006). In our application we are interested in regions where potential vascular
lesions exist. Hence, we have proposed an automatic VOI definition that creates a
region surrounding the possible lesion and maps the VOI to another time-frame. The
advantages of defining a VOI for registration instead of using the whole image are
two-fold. First, the computational time of the registration process is dramatically
reduced. Second, a localized VOI avoids the interaction with large structures, such as
the heart chambers, that usually interfere in vascular registration. In consequence, our
method does not require to perform vascular enhancement before the registration as
other methods do (Suh et al., 2010; Zhang et al., 2009a,b, 2010).

A total of 10 patients were used to optimize the automatic VOI selection. Then, 30
patients were used to validate the method showing a success rate of 100%. Additionally,
90 VOI pairs obtained from 10 different datasets were used to evaluate the registration
stage. First, four similarity metrics were evaluated and optimized for the proposed task.
Mutual information presented the best results over all the evaluated subvolumes. Using
this metric, the method was compared with an incremental frame registration scheme
that has been previously proposed in literature. Our results are comparable with this
approach, while our method is less time consuming and requires less information (only
two time-frames).

An interesting characteristic of this method relies in the fact that the image is
subdivided into different VOIs which allows speeding up the process. Furthermore, the
independence of each volume gives the possibility of developing a parallelized version
of the method. This, combined with a GPU implementation of both rigid and non-
rigid stages (Modat et al., 2010), could signify a reduction to the order of seconds
of the overall registration stage, which would open perspectives for its application in
clinical CAD. However, there is still one issue that needs to be solved in order to
increase robustness of the method. The latter still fails to compensate large initial
displacements. Although the incremental frame registration approach neither solves
the problem, it shows better results in these cases. Therefore it seems as an alternative
solution. An open possibility could be to use direct registration by default and switch
to the incremental frame approach for large displacements.

The application of the method in order to confront vascular potential lesions so
as to confirm / reject the diagnosis, showed that it can help to remove some false
positives. However, we consider this part of our work as an interesting perspective that
requires further investigations. First, the detection results obtained at the second time-
frame can be seriously affected in the cases where the registration is of poor quality.
Therefore, it is still necessary to improve the robustness of this stage. Second, the way
the problem is formulated right now does not permit to correct false negatives. This
would require a full anomaly detection process in both time-frames considered and an
adequate way to combine the detections from both. We did not consider to perform
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the full centerline extraction and anomaly detection at the second time-frame (systole)
because, in general, the quality of the systolic image is not sufficient to extract a
reliable centerline. Moreover, the lower quality of the second time-frame can introduce
a large number of false positives. Therefore, in the systolic phase we only focus in a
small portion around the suspected lesion. A possible path to improve both sensitivity
and specificity may be oriented towards a combination of DLD-SVM and LPU, when
using two time-frames, since these two methods have opposite behaviors in terms of
sensitivity and specificity.
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6

Conclusions

In this work, we have discussed a methodological framework aimed at the detection
of vascular lesions. Our main goal has been to propose a methodology that eases the
diagnosis of vascular diseases and, more specifically, coronary heart disease (CHD).
In the preceding chapters we have discussed the different elements that build up our
framework and their issues when applying them in CHD diagnosis. Nearly each chapter
has provided separate discussions about the achievements and the issues that can still
be improved. In this chapter, we summarize the overall results and provide some general
research perspectives.

6.1 Contributions

Figure 6.1 presents a scheme that summarizes the structure, as well as the main con-
tributions of this work. The methodological contributions are attached to three main
axes: the formulation of the lesion identification problem as an anomaly detection, the
solution of such a problem through classification and the validation of potential lesions
with inter-phase information.

Formulation of the Lesion Identification Task as an Anomaly Detection
Problem

To tackle our particular problem we have chosen an approach different from the one
followed in literature for lesion identification. We prefer to identify healthy vessel
segments and to consider everything that deviates from thus identified normality as
potentially diseased. Most of the approaches found in literature (see Section 2.2), tend
to model the lesions. Since, by nature, lesions are heterogeneous, the approaches based
on lesion modeling require user’s manual interaction, the use of different algorithms, or
different types of images for each type of lesions. Contrarily, our proposal is automatic,
can handle different types of lesions and relies exclusively in computed tomography
(CT) angiography images.

The implementation of our approach was based on a machine learning scheme to
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Figure 6.1: Summary of methodological contributions - The methodological con-
tributions are attached to three main axes: the formulation of the lesion identification task
as an anomaly detection problem, the solution of such a problem through classification and
the validation of potential lesions with inter-phase information. The main contributions at
each of the axis are marked in light red, while minor contributions are marked in gray.

136



6.1 Contributions

classify normal and abnormal cross-sections orthogonal to a previously extracted cen-
terline. Contrarily to the choice done by most of the existing ML-based approaches
that follow a supervised classification scheme, we selected to avoid or minimize the use
of labels. This decision was motivated by the difficulty to obtain accurate and represen-
tative labels. Moreover, supervised methods are incapable of detecting new emerging
abnormalities. Since lesions are highly variable, unknown abnormal patterns can often
appear. To overcome all of these difficulties, we formulated our problem as an anomaly
detection problem (Chandola et al., 2007; Hodge and Austin, 2004; Markou and Singh,
2003a,b; Patcha and Park, 2007). To the best of our knowledge, such an approach
is used for the first time used in this domain (Section 2.3). The selected perspective
permitted us to focus in only one class (the normality). Everything that diverges from
it is considered abnormal.

Solution of the Anomaly Detection Problem through Classification

Based on the definition of anomalies as low probability density regions, we made use
of a density level detection (DLD) approach to formulate our anomaly detection prob-
lem. We selected to solve it through the use of support vector machines (SVM). The
selection of a DLD approach was motivated by the possibility of avoiding or minimizing
the dependence on labeled data. We assumed that two scenarios could occur: abso-
lutely no information on the data was available (no labels) or labels of only one of the
classes could be obtained. For the first case, we made use of the so called DLD-SVM
algorithm (Steinwart et al., 2005a). For the second case, we employed a methodology
called learning from positive and unlabeled samples (LPU) (Porter et al., 2009), which
only required labels coming from one of the classes. For our particular case, we defined
that these labels should come from normal cases (Section 2.3.1).

A classifier performance strongly depends on the quality of the input features. This
work was also devoted to the study and selection of adequate features for our partic-
ular problem. Features for DLD problems should reflect the respectively high / low
concentration regions of normal / abnormal samples. In Section 2.4.1 we introduced
a novel intensity-based metric, denoted Concentric rings, that aimed to capture the
intensity profiles and the axial symmetry of normal vessels, as well as the deviations
from this behavior in diseased regions. In Chapter 3 we presented the experimental de-
sign of this metric through a series of experimentations on synthetic phantoms and its
posterior validation on patients’ CT data. Results showed good specificity and sensitiv-
ity values for both DLD-SVM and LPU. Moreover, the classification results with each
algorithm demonstrated a substantial level of coincidence (Landis and Koch, 1977)
w.r.t. observers’ annotations when measured through the Kappa coefficient (Fleiss,
1971) (0.72% and 0.71%, respectively). The latter allows us to say that the metric is
suitable for anomaly detection in the vascular domain.

To date, there is almost no state-of-the-art work on the selection of features for
vascular lesion detection from a DLD point of view. Therefore, we also introduced a
number of alternative candidate feature sets to be compared with our proposed met-
ric. For this matter, we have proposed to use existent metrics that are commonly
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used as vesselness criteria for vascular enhancement / segmentation. The metrics were
parametrized such that they could be comparable (in terms of number of features,
evaluated regions, among others) to the Concentric rings metric.

Since it is widely accepted that the combination of different types of features can
improve the performance of classifiers, we derived an unsupervised/semi-supervised
feature selection scheme that is based on the properties of our classifiers: DLD-SVM and
LPU (Section 2.5.1). We made use of the empirical risk associated to these classifiers
to define the optimal feature set criterion. The main advantage of this proposal was
that it kept the unsupervised/semi-supervised nature of our method. Additionally,
we investigated existing supervised feature selection methods with the perspective to
compare their performance with our proposal.

Using the whole set of candidate features, in Chapter 4 we presented the results
of feature selection through each of the proposed methods. The latter allows to say
that the metric Concentric rings is suitable for anomaly detection. In DLD-SVM, it
demonstrated to be the best performing, while it was ranked third with LPU not far
from the best performing metrics. The results obtained with the unsupervised / semi-
supervised proposal using DLD-SVM and LPU were the best and achieved specificities
of 96.37 and 86.71%; and sensitivities of 76.52 and 83.84%, respectively. Moreover, the
Concentric rings metric was always among the selected group of metrics, regardless
the selection strategy. As can be seen from these results, as a general rule, we found
that DLD-SVM tends to have better specificity than LPU, while LPU tends to have a
higher sensitivity.

To further validate and justify our different methodological choices, we compared
the performance of DLD-SVM and LPU with other existent state-of-the-art methods
in classification. The evaluated methods consisted of two classical methods (Random
forests and Soft-margin SVM) and a very popular anomaly detection method (One-class
SVM). Our conclusion here was two-fold. First, that DLD-SVM and LPU outperform
the other methods. Second, we could validate the relevance of the anomaly detection
perspective. In every case, the three anomaly detection methods outperformed the
conventional classification approaches.

One of the major concerns in the development of our framework was the additional
difficulty that is imposed in anomaly related problems and which refers to class imbal-
ance. In this type of problems, it is pretty common to have large databases of normal
cases, while it is less common to find anomalous situations. This situation can affect
negatively the performance of classifiers. For this matter, we introduced an algorithmic
variation of the LPU implementation that defines a strategy to increment the training
data (Section 2.3.4). The latter was assessed on phantom data and promising results
were obtained (Section 4.5). Additionally, we have chosen to use an additional algo-
rithm as the last step of the learning phase (Section 2.3.5). It is based on the variation
of the b term of the SVM decision function and represents a negligible computational
overhead. It is guaranteed that its use will not worsen the result, and in most cases a
significant performance improvement was achieved.
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Validation of Potential Lesions by Using Inter-Phase Information

The final element that builds up the core of our contribution is related to the valida-
tion of potential lesions by using information from multiple cardiac time-frames. Our
proposal was inspired by the procedure followed by physicians in CHD diagnosis. Typ-
ically, they identify potential lesions at one time-frame and, afterwards, they confirm
/ reject it by inspecting a second time-frame. We followed this same workflow and
use the anomalies detected at a particular time-frame to construct a volume of interest
(VOI). Then, at a second time-frame a VOI with high probability of containing the
same anatomic region was created. The two VOIs were then non-rigidly registered and
presented to the observer so as to attract his/her attention and to aid the diagnosis by
facilitating the local comparison between the images reconstructed at different time-
points. We evaluated each of the stages of the method and the obtained results indicate
that this approach is a promising perspective for CHD assessment.

Overall Evaluation

The implementation of the presented framework implied a large amount of work devoted
to parameter tuning, validation and optimization of strategies. Figure 6.2 summarizes
the tasks associated to the evaluation, validation and optimization of each of the ele-
ments constituting our work. Since a lot of work has been devoted to this task and,
moreover, since this is a novel approach to handle vascular lesions, we believe that
evaluation itself can be considered as an important contribution of this thesis.

To conclude we can say that the diagnosis of CHD is a complex task that involves
many components. In this work we have proposed a methodological framework designed
to ease this task and we have extensively evaluated it. We developed algorithms aiming
CHD automation, while keeping a good level of specificity and sensitivity. However,
there are issues that remain to be solved. This future work is discussed in the following
section.

6.2 Perspectives

Several paths can be followed in order to improve our proposal. We consider that from
the classifiers point of view it is difficult to introduce changes that can improve the
performance of the method. As an example, it would be desirable that they manage
the balanced error rate concept instead of the classification error. However, such a
modification is not simple. There is a strong mathematical background supporting
statistical learning and it is not an easy task to introduce a new concept. Therefore,
to achieve improvements in the classification it is necessary to tackle other elements.

Perhaps the first direction that should be followed deals with the design of metrics
to be used as input for the learning algorithms. One of the goals of our work has been
to define a set of features that should be taken into account when designing a classifier
for vascular lesion identification. Since the detection of lesions through ML techniques
is a rather new approach, there is not a significant amount of literature that can guide
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Figure 6.2: Evaluation of the different elements constituting the proposed
methodological framework - Evaluation of the framework can be divided into two large
albeit unequal groups: evaluation of the classification framework and evaluation of the use
inter-phases information. The main contributions in the evaluation are highlighted in light
red, while the minor ones appear in gray.
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the selection of features. In this sense, our work can be considered as highly relevant.
However, this should be just a starting point, and the possibility of evaluating other
type of metrics is open. For instance, the possibility to include the extraction of 3D
features is a natural extension of our approach.

Still in what concerns input features, we consider that the Concentric rings can be
extended so that it takes into account the progressive narrowing of vessels. Up to now,
the metric uses a fixed radius to extract features all along the vessel axis centerline. This
can introduce undesired information that can affect the classifiers performance. Also,
the metric can be extended to deal with 3D information in what could be considered
as a concentric cylinder.

An additional way to improve performance could be the evaluation of further tech-
niques of post-processing that enhance the resulting classification. As an example, the
false positives introduced by bifurcations in DLD-SVM could be eliminated by includ-
ing a post-processing stage that reviews the obtained labels. For this purpose, it would
be necessary to develop a metric that can handle bifurcations. Generally speaking,
bifurcations are a common problem in vascular literature. A similar post-processing
approach could be thought for another common source of false positives, namely the
vicinity of lesions.

The inherent weaknesses of the classifiers can be diminished by obtaining a large
amount of training data. Although our proposal has the advantage of not requiring
labeled data (or only partially labeled data), access to labeled data is still a major
concern in medical image processing, at least for the purpose of validation. For this
reason, we were only able to demonstrate the finite sample effects on synthetic data,
but the lack of a sufficiently large database of patient data did not permit its evaluation
on real cases. Therefore, we consider that initiatives such as those of Grand Challenges
1 should be highly encouraged.

From a more global view, our final aim is to assist clinicians in the diagnosis of
vascular diseases. With this in mind, it is possible to say that our method is suitable
for this purpose. However, there are still some issues that need to be solved so that it
can be fully applicable to clinical routine. First of all, our method should be associ-
ated with a robust centerline extraction algorithm. Let us recall that our main target
was not to develop a centerline extraction algorithm and that we wanted to evaluate
the classification stage, while isolating the errors that can be introduced by an erro-
neous centerline. However, there are plenty of methods in literature that have a high
performance (Friman et al., 2010; Lesage et al., 2009b) and that can be included in
our framework. An advantage of our proposed framework is that its different elements
are separated. These characteristic allows the possibility of choosing a state-of-the-art
centerline extraction algorithm, and of replacing it in future by another more accurate
one. A second issue that should be solved is related to the computational times of
the classification framework. ML approaches are by nature computationally expensive.
However, we consider that feature extraction, feature selection and the training stages
are highly parallelizable. Therefore, a GPU implementation of these stages could be

1http://www.grand-challenge.org/
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foreseen to reduce times.
As a final improvement, we consider that further work should be carried out to

integrate the information obtained in the registration stage. Up-to-now we perform a
registration that allows a fast comparison of locations at two different time-points. This
proposal has been inspired from the way clinicians evaluate cardiac images. However,
our method only to reduces the time required to find the different ”potential lesion” lo-
cations and possibly reject false positives. The final diagnostic is given by the clinician.
Although we consider the latter should remain that way, there is still information that
can be exploited. First, the opposite behavior of DLD-SVM and LPU may be exploited:
a good alternative could be to combine them by means of the time-frames in order to
improve the precision in the detection. Second, information from the registration, e.g.
its reliability quantified by the resemblance between the VOIs, amount of deformation,
etc., may be exploited to provide more assessment elements to the clinician.
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Pelt, N. R. Mollet, F. Cademartiri, A. C. Weustink, W. B. Meijboom, C. L. M.
Witteman, M. Pim J. de Feyter, and G. P. Krestin. Learning Curve for Coronary
CT Angiography: What Constitutes Sufficient Training? Radiology, 251:359–368,
2009. 14, 20

A. J. Reimann, I. Tsiflikas, H. Brodoefel, M. Scheuering, D. Rinck, A. F. Kopp, C. D.
Claussen, and M. Heuschmid. Efficacy of Computer Aided Analysis in Detection

153



REFERENCES

of Significant Coronary Artery Stenosis in Cardiac Using Dual Source Computed
Tomography. International Journal of Cardiovascular Imaging, 25:195–203, 2009.
60, 61

I. Reinertsen, M. Descoteaux, K. Siddiqi, and D. Collins. Validation of Vessel-based
Registration for Correction of Brain Shift. Medical Image Analysis, 11:374–388, 2007.
113

F. Renard and Y. Yang. Image Analysis for Detection of Coronary Artery Soft Plaques
in MDCT Images. In 2008 IEEE International Symposium on Biomedical Imaging:
From Nano to Macro (ISBI 2008), pages 25–28, Paris, France, May 14-17 2008. 22

D. Rinck, S. Krüger, Reimann, and M. Scheuering. Shape-based Segmentation and Vi-
sualization Techniques for Evaluation of Atherosclerotic Plaques in Coronary Artery
Disease. In R. L. G. J. Kevin R. Cleary, editor, Proceedings of SPIE Medical Imag-
ing 2006: Visualization, Image-Guided Procedures and Display., volume 6141, pages
124–132, 2006. 22

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes.
Non-rigid Registration Using Free-form Deformations: Application to Breast MR
Images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999. 117

D. Ruijters, B. ter Haar Romeny, and P. Suetens. Vesselness-based 2D-3D Registration
of the Coronary Arteries. International Journal of Computer Assisted Radiology and
Surgery, 4(4):391–397, 2009. ISSN 1861-6410. 113, 114

O. Salvado. Characterization Of Atherosclerosis With Magnetic Resonance Imaging,
Challenges and Validation. PhD thesis, Case Western Reserve University, August
2006. 21

Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and
R. Kikinis. Three-dimensional Multi-scale Line Filter for Segmentation and Visual-
ization of Curvilinear Structures in Medical Images. Medical Image Analysis, 2(2):
143–168, 1998. 37

S. Saur. Quantitative Assessment of Atherosclerosis in Coronary Arteries. PhD thesis,
ETH Zurich, 2009. 7, 8, 23

S. C. Saur, H. Alkadhi, L. Desbiolles, G. Székely, and P. C. Cattin. Automatic Detection
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Appendix A

SVM Formulation

The following Appendix provides further details on two SVM-based methods that were
employed along this thesis. These are: Soft Margin SVM (Section A.1) and One-class
SVM (Section A.2).

A.1 Formulation of Hard Margin and Soft Margin SVM

Let D denote a training set of sample-label pairs (xi, yi), i = 1, ..., N , where xi ∈ Rp

and yi ∈ {1,−1}. Suppose that D is linearly separable, so there is an hyperplane H
that separates positive from negative samples. The points x lying on a hyperplane
satisfy:

〈w,x〉+ b = 0, (A.1)

where w is a vector normal to the hyperplane, 〈·, ·〉 represents the scalar product,
b
‖w‖ denotes the distance from the hyperplane to the origin and ‖w‖ is the Euclidean
norm of w. The goal is to find the hyperplane H, i.e. the pair w, b, that maximizes
the margin defined as a sum of the shortest distances separating H from the closest
positive and negative sample, respectively. Actually, thus separated data should be
located beyond two parallel hyperplanes H1, H2 equidistant from H. The respective
subspaces containing the positively and negatively labeled data can be formulated as
follows:

〈xi,w〉+ b ≥ 1 for yi = 1, (A.2)

〈xi,w〉+ b ≤ −1 for yi = −1, (A.3)

which combined give:
yi (〈xi,w〉+ b)− 1 ≥ 0 ∀i. (A.4)

The hyperplanes H1 and H2 respectively can be described by:

H1 : 〈xi,w〉+ b = 1
with distance to origin |1−b|

‖w‖
H2 : 〈xi,w〉+ b = −1
with distance to origin |−1−b|

‖w‖

(A.5)
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They define the margin 2
‖w‖ . It is possible to find H1 and H2, which give the

maximum margin, by minimizing ‖w‖, subject to constraint from Eq. A.4. To make
the optimization problem easier to solve, the minimization of ‖w‖ is replaced by the
minimization of:

1
2
‖w‖2 (A.6)

under the same constraint (Eq. A.4). Figure A.1 illustrates the previously formu-
lated problem in a two-dimensional case. Training points xi, for which Eq. A.5 is
satisfied, belong either to H1 or to H2d, and are called support vectors. The max-
imization of the margin implies defining support vectors as far as possible from the
hyperplane.

Figure A.1: Linear separating hyperplanes - The optimal hyperplane is shown in a
solid line, while support vectors are circled. Illustration from (Burges, 1998).

Eq A.6 is called an objective function, while Eq. A.4 represents the inequality
constraint. Both, form a constrained optimization problem. This type of problems are
solved by the introduction of Lagrange multipliers αi ≥ 0 and a Lagrangian

LP ≡
1
2
‖w‖2 −

N∑
i=1

αi(yi (〈xi,w〉+ b)− 1) (A.7)

The Lagrangian has to be minimized w.r.t the primal variables w and b and max-
imized w.r.t the dual variables αi. This is a convex quadratic programming problem.
Therefore, it can be solved through its dual problem: maximizing LP , subject to the
constraints imposed by both primal and dual variables (αi ≥ 0).

Requiring that the derivatives of LP w.r.t. w and b must vanish, gives∑
i

αiyi = 0 (A.8)

and
w =

∑
i

αiyixi (A.9)

Replacing Eqs. A.8 and A.9 in A.7, it is possible to eliminate the primal variables
w and b, arriving to the so-called dual optimization problem which is the one solved in
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practice:

max
N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj〈xi,xj〉 (A.10)

subject to αi ≥ 0 ∀i and
∑

i αiyi = 0.
As so far formulated, the SVM assumes linearly separable data. Cortes and Vapnik

(1995) formulated the case where some of the data could be misclassified so that linear
separability is not required. This formulation is commonly refered to as soft margin
SVM.

The formulation of a soft margin requires to relax the constraints A.2 and A.3 but,
only when necessary. Then a further cost needs to be introduced. This is done by
introducing a positive slack variable ξi, i = 1...N into the constraints. A.4 becomes:

yi (〈xi,w〉+ b) ≥ 1− ξi ∀i (A.11)

with
ξi ≥ 0 ∀i (A.12)

The realization of the so formulated soft margin classifier is obtained by minimizing
the function

1
2
‖w‖2 + C

N∑
i=1

ξi, (A.13)

subject to constraints A.11 and A.12, where C > 0 is a constant that determines the
trade-off between margin error maximization and training error minimization. Rewrit-
ing in terms of the Lagrange multipliers, leads again to the problem of maximizing
Eq. A.10, subject to the constraints

0 ≤ αi ≤ C ∀i (A.14)

and
N∑
i=1

αiyi = 0. (A.15)

A.2 The One Class SVM

Schölkopf et al. (2001) proposed a method to adapt the the standard SVM methodology
(Section A.1) to what they call the one-class classification problem. Their proposal
makes use of an algorithm that computes a binary function that is supposed to capture
regions in input space where the probability density lives. A function which is nonzero
in a region where most of the data is located. The problem is formulated as follows:

Suppose there is some data drawn from an underlying probability P . The goal is to
find a subset S on the feature space such that the probability that a point drawn from
P lies outside S equals some a priori specified υ ∈ (0, 1). The problem is solved by
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mapping data into a feature space H using an appropriate kernel function and finding
a function f(x) that is positive inside S and negative elsewhere.

In order to make use of SVM’s it is necessary to define two clasess. Therefore,
Schölkopf et al. (2001) treat the origin as the only member of the second class. Under
this formulation, the goal of the algorithm is to find the hyperplane to separates the
mapped vectors from the origin with maximum margin (Figure A.2)

f(x) =
{

+1 if x ∈ S
−1 if x ∈ S̄ (A.16)

Figure A.2: One-class SVM illustration - The origin is the only original member
of the second class. Circles surrounding data points represent the optimal data partition
found by the algorithm.

Manevitz and Yousef (2001) Based on A.13, the following quadratic program, is
defined in order to separate the data from the origin:

min
1
2
‖w‖2 +

1
υN

∑
i=1

ξi − b (A.17)

subject to the restrictions imposed by Eqs. A.11, A.12 and where w, b and N have
the same significance as in the previous section. The difference introduced in this
formulation is the presence of υ.

Since nonzero slack variables ξi are penalized in the objective function, it is expected
that if w and b solve the problem, then the decision function

f(x) = sign(〈Φ(xi),w〉 − b) (A.18)
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will be positive for most examples xi contained in the training set, while the SV type
regularization term |w‖ will still be small. The actual trade-off between these two goals
is controlled by υ. It should be noted that the notation Φ(xi) is introduced to remark
that the input data is mapped to the feature space by a kernel function Φ.
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